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Fundamentals of Linear Regression
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Figure 1: Courtesy of XKCD

In this section, we investigate one of the most common and widely used machine
learning techniques: linear regression.

Linear regression is a very intuitive supervised learning algorithm and as its
name suggests, it is a regression technique. This means it is used when we have
labels that are continuous values such as car prices or the temperature in a
room. Furthermore, as its name also suggests, linear regression seeks to find fits
of data that are lines. What does this mean?

Motivations

Imagine that you received a data set consisting of cars, where for each car you
had the number of miles a car had driven along with its price. In this case, let’s
assume that you are trying to train a machine learning system that takes in the
information about each car, namely the number of miles driven along with its
associated price.

Here for a given car, the miles driven is the input and the price is the output.
This data could be represented as (X,Y) coordinates.

Plotting them on a 2-d coordinate system, this data could might look like Figure
2.
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Figure 2: Linear regression car data plot

In this case, it seems that there is a linear relationship between the miles driven
and the price. If we fit a reasonable looking line to the data, it could look like
Figure 3.

We could describe the model for our car price dataset as a mathematical function
of the form: F(X) = A; - X + Ao

Here A; and A( are called weights and these are the values that determine
how our linear function behaves on different inputs. All supervised learning
algorithms have some set of weights that determine how the algorithm behaves
on different inputs, and determining the right weights is really at the core of
what we call learning.

Let’s say that the linear fit above was associated with the weights A; = 5 and
Ap = 0.5. Now if we changed the Ay value to something like Ag = —2, we might
get the linear fit in Figure 4.

Or imagine that we thought that there was a much steeper relationship between
the number of miles driven and a car’s price. In other words, we think the A,
value (which here determines the slope of the line) should be a bigger value such
as 8. Our linear fit would then look like Figure 5.
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Figure 4: Linear regression shifted down
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Figure 5: Linear regression higher slope

A Training Paradigm

These varieties of linear fits raise the question: how do we actually learn the
weights of this model or any machine learning model in general? In particular,
how can we leverage the fact that we have the correct labels for the cars in our
dataset?

Training and evaluating a machine learning model involves using something
called a cost function. In the case of supervised learning, a cost function is a
measure of how much the predicted labels outputted by our model deviate from
the true labels. Ideally we would like the deviation between the two to be small,
and so we want to minimize the value of our cost function.

A common cost function used for evaluating linear regression models is called
the least-squares cost function. Let’s say that we have n datapoints in our
data set.

This could look like [(X1,Y7), (X2,Y2), ..., (Xn, Ya)].

If we are learning a function F'(X), the least-squares regression model seeks to
minimize:



The deviation between our predicted output (F(X)) and the true output ( Y)
is defined as a residual. The least-squares cost is trying to minimize the sum
of the squares of the residuals (multiplied by a constant in this case).

Here it is important to note that F'(X) is a function of the weights of our model.
In our motivating example, F'(X) would be a function of A; and Ag. The values
of A; and Ay that produce our optimal model are the values which achieve the
minimal value of C'(X).

How do we actually compute the weights that achieve the minimal values of
our cost? Here, as with all machine learning models, we have two options: an
analytical or a numerical solution. In an analytical solution, we seek to
find an exact closed-form expression for the optimal value. In this particular
case, that involves using standard calculus optimization. We would take the
gradients (which are just fancy derivatives) of the cost function with respect to
the weights, set those gradients to 0, and then solve for the weights that achieve
the 0 gradient.

This technique is nice because once we have computed the closed-form expression
for the gradients, we can get the optimal weight values for any new data. Here
we are able to develop an analytical solution in the case of linear regression with
a least-squares cost function.

However, not all models have nice well-formed gradient expressions that allow
us to solve for the global optimum of a problem. For these problems, we must
turn to numerical methods. Numerical methods typically involve a step-wise
update procedure that iteratively brings weights closer to their optimal value.
Here we again compute the gradients with respect to all the weights and then
apply the following update for each weight A:

oC
Apeow = Ag — - =
new old @ OA

We continue applying these updates for some number of iterations until our
weight values converge, by which I mean to say they don’t change too much

from one iteration to the next. This very important numerical optimization
procedure is called gradient descent.

Note in our expression for gradient descent above, we have this magical alpha («)
value being multiplied to the gradient. Alpha is an example of what is called in
machine learning a hyperparameter. The value of this hyperparameter alpha
determines how quickly updates are made to our weights. We are free to adjust
the value so that gradient descent converges more quickly.



Many machine learning algorithms have their own hyperparameters that we
can adjust and fine-tune to achieve better performance in our algorithm. For
some algorithms, such as in deep learning, hyperparameter tuning is a super
important task that can drastically impact how good of a system we build.

In the case of linear regression with a least-squares cost we are guaranteed that
gradient descent will eventually converge to the optimal weight values. However,
certain optimization problems don’t have that guarantee, and the best we can
hope for is that gradient descent converges to something close to the global
optimum. A prominent example of models with this behavior are deep learning
models, which we will discuss in greater depth later.

An important point to keep in mind is that in the original linear model we
proposed we only have two weights, A; and Ag. But what if we really believed
that car prices were a function of two features, the number of miles driven and
the size of the trunk space in cubic feet?

Now if we wanted to train a linear regression model, our dataset would have to
include the number of miles driven, the size of the trunk space, and the price
for every car. We would also now have three weights in our linear regression
model: Ag, Ay, and As.

Furthermore, our data would now exist in a 3-d coordinate system, not a 2-d
one. However, we could use the same least-squares cost function to optimize
our model. As we increase the number of features, the same basic algorithmic
considerations apply with a few caveats. We will discuss these caveats when we
discuss the bias-variance tradeoff.

When Does a Linear Fit Fit?

When does linear regression work well as a modelling algorithm choice? In
practice, it turns out that linear regression works best when there actually is
a linear relationship between the inputs and the outputs of your data. For
example, if our car price data looked like Figure 6.

then linear regression probably would not be a good modelling choice.

When we are building a machine learning system, there are a few factors that
we have to determine. First off, we need to extract the correct features from
our data. This step is crucial!

In fact, this step is so important that for decades the contributions of many
artificial intelligence papers were just different set of features to use for a par-
ticular problem domain. This style of paper has become not as prevalent with
the resurgence of deep learning .

After selecting features, we need to pick the right modelling algorithm to fit.
For example, if we think there is a linear relationship between our inputs and
outputs, a linear regression may make sense. However, if we don’t think a line
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Figure 6: Non-linear data

makes sense, we would pick a different model that has some different assump-
tions about the underlying structure of the data. We will investigate many other
classes of models with their assumptions about the data in later sections.

Test Your Knowledge
Definition

Cost Function

Training Techniques
Determine the Coefficients

Complete Implementation
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Introduction to Logistic Regression
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Figure 7: Source Twitter

In this section, we will continue with our study of supervised learning by ex-
ploring our first classification algorithm. A vast majority of problems tackled in
the real world involve classification, from image labelling, to spam detection, to
predicting whether it will be sunny tomorrow, so we are at an exciting milestone
in our study of artificial intelligence!

Ironically, the first classification algorithm we will investigate is called logistic
regression . Putting aside name confusion for now, the form of logistic regression
we will look at is for binary classification tasks, where we only output two
possible labels.

Model Definition

To motivate logistic regression, let us begin with a modified version of our
running car example from the last section on linear regression.

Rather than build a system to predict the price of a car, we will build a system
that is provided a set of features of a car and will determine whether the car is
expensive or cheap. In particular, we will extract a few different features from
the cars in our dataset such as:

e the size of the trunk,
o the number of miles driven
e who the car manufacturer is.



Let’s call these features X7, X, and X3. We will consolidate these features into
a single vector variable X = (X1, X2,X3). These features will be fed into a
mathematical function F(X), to get a probability of whether or not the car is
expensive.

In other words, we will compute F(X) (where the function F' is unspecified for
now), and this will give us a probability between 0 and 1. We will then say that
if our probability is greater than or equal to 0.5, we will label our prediction,
expensive, otherwise it will be cheap. This can be expressed mathematically as
follows:

i if F(X)>0.
Prediction — 4 &Xpensive (X)>0.5
cheap if F(X)<05
Note, we could have reversed the labels and said a probability greater than 0.5
is cheap and it would not have made a difference. The only important thing is
to be consistent once you’ve selected a labelling scheme!

So what exactly is going on in that F(X) function? The logistic regression
model describes the relationship between our input car features and the output
probabilities through a very particular mathematical formulation. Given our
input features X7, X5, and X3 the formulation is as follows:

1

F(X) - 1+ e—(A1- X1+ A2 X2+A5-X3)

where here the weights of our model that we have to learn are A;, As, and
A3. Ok, this gives us the mathematical form, but let’s try to gain some visual
intuition for the formulation. What does this function actually look like?

It turns out that this function of the inputs, which is called a sigmoid, has a
very interesting form shown in Figure 8.

Notice how the mathematical form of the logistic regression function has a sort
of elongated S shape. The probability returned is exactly 0.5 when the input is
0, and the probability plateaus at 1 as our input gets larger. It also plateaus at
0 as the inputs get much smaller.

Logistic regression is also interesting because we are taking our feature of inputs,
transforming them via a linear combination of the weights (namely Al - X1 +
A2 - X2+ A3 - X3), and then running them through a nonlinear function.

Training the Model

How do we train the weights of a logistic regression model? Let’s as-
sume that we have a dataset of m cars with their associated true labels:
[(X1,Y7), (X2,Y2),...,(X,, Ys)]. We won’t dive into the mathematical details,
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Figure 8: Logistic regression sigmoid graph

but it turns out we can write an expression for the total probability of our
dataset which looks as follows:

Probability ﬁ(F(Xi))Yi (1= F(X)'™"

i=1

For our purposes, understand that our aim will be to maximize this probability.
We can do by taking the derivative with respect to our weights and setting
the derivative to 0. We can then run gradient descent using our computed
gradient to get our optimal weights. This is analogous to the procedure used for
numerically optimizing a linear regression model in the linear regression section.

Final Thoughts

Logistic regression can also be applied to problems with more than just binary
outputs for a given set of inputs. In this case, the model is called multinomial
logistic regression.

For this section we have restricted ourselves to binary outputs because it is
a natural place to start. That being said, multinomial logistic regression is
especially important for more sophisticated models used in deep learning.

When is logistic regression useful? In practice, logistic regression is a very nice
off-the-shelf algorithm to begin with when you are doing any type of classifica-
tion.

10



It has a fairly straightforward description, can be trained fairly quickly through
techniques such as gradient descent because of its nice derivative, and often
works well in practice. It is used frequently in biostatistical applications where
there are many binary classification problems.

Test Your Knowledge
Implement the Algorithm
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Why So Naive, Bayes?
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I hope you’re excited to learn about another fantastic class of machine learning
models: Naive Bayes. Naive Bayes is wonderful because its core assumptions
can be described in about a sentence, and yet it is immensely useful in many
different problems.

But before we dive into the specifics of Naive Bayes, we should spend some time
discussing the difference between two categories of machine learning models:
discriminative and generative models.

Beginnings

Naive Bayes will be the first generative algorithm we look at, though other
common examples include hidden markov models, probabilitistic context-free
grammars, and the more hip generative adversarial networks.

Recall that in our running car example of the past few sections, we are given a
dataset of cars along with labels indicating whether they are cheap or expen-
sive. From each car, we have extracted a set of input features such as the size

12



of the trunk, the number of miles driven, and who the car manufacturer is.

We start from the distribution we are trying to learn P(X7, X5, X3,Y). We can
expand the distribution using a few rules of probability along with Bayes’ Rule:

P(X1,X5,X35,Y)=P(Y) - P(X1]Y) - P(X2]X1,Y) - P(X;5]X1,X5,Y)

This formulation was derived from a few applications of the chain rule of proba-
bility. Now we get to the big underlying assumption of the Naive Bayes model.

We now assume the input features are conditionally independent given the
outputs. In English, what that means is that for a given feature X5, if we know
the label Y, then knowing the value of an additional feature X; doesn’t offer us
any more information about Xo.

Mathematically, this is written as P(X35|X1,Y) = P(X2|Y). This allows us to
simplify the right side of our probability expression substantially:

P(X1, X5, X3,Y) = P(Y) - P(X1]Y) - P(X2]Y) - P(X3]Y)

And with that, we have the expression we need to train our model!

Naive Training

So, how do we actually train the model? In practice, to get the most likely
label for a given input, we need to compute these values P(X;|Y), P(X5|Y),
etc. Computing these values can be done through the very complicated process
of counting!

Let’s take a concrete example to illustrate the procedure. For our car example,
let’s say Y represents cheap and X, represents the feature of a car’s manufac-
turer.

Let’s say we have a new car manufactured by Honda. In order to compute
P(X; = HondalY = cheap), we simply count all the times in our dataset we
had a car manufactured by Honda that was cheap.

Assume our dataset had 10 cheap, Honda cars. We then normalize that value
by the total number of cheap cars we have in our dataset. Let’s say we had 25
cheap cars in total. We thus get P(X; = Honda|Y = cheap) = 10/25 = 2/5.

We can compute similar expressions (e.g. P(X2 = 40000 miles driven|Y =
cheap)) for all the features of our new car. We then compute an aggregated
probability that the car is cheap by multiplying all these individual expressions
together.

We can compute a similar expression for the probability that our car is ex-
pensive. We then assign the car the label with the higher probability. That

13
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outlines how we both train our model by counting what are called feature-label
co-occurrences and then use these values to compute labels for new cars.

Final Thoughts

Naive Bayes is a super useful algorithm because its extremely strong indepen-
dence assumptions make it a fairly easy model to train. Moreover, in spite
of these independence assumptions, it is still extremely powerful and has been
used on problems such as spam filtering in some early version email messaging
clients.

In addition, it is a widely used technique in a variety of natural language pro-
cessing problems such as document classification (determining whether a book
was written by Shakespeare or not) and also in medical analysis (determining
if certain patient features are indicative of an illness or not).

However the same reason Naive Bayes is such an easy model to train (namely
its strong independence assumptions) also makes it not a clear fit for certain
other problems. For example, if we have a strong suspicion that certain features
in a problem are highly correlated, then Naive Bayes may not be a good fit.

One example of this could be if we are using the language in an email message
to label whether it has positive or negative sentiment, and we use features for
whether or not a message contains certain words.

The presence of a given swear word would be highly correlated with the appear-
ance of any other swear word, but Naive Bayes would disregard this correlation
by making false independence assumptions. Our model could then severely un-
derperform because it is ignoring information about the data. This is something
to be careful about when using this model!

Test Your Knowledge
Naive Bayes Assumption

Smoothing
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Basics of Support Vector Machines
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In this section, we will explore a family of classification algorithms that has a
very different theoretical motivation from ones we’ve seen previously. We will
be looking at support vector machines.

Back in the early 2000s before deep learning surged to the forefront of Al
support vector machines were the cool kid on the block. Even today, support
vector machines are still one of the best go-to algorithms for a new classification
task because of their powerful ability to represent very diverse types of statistical
relationships in data as well as their ease of training.

Max-Margin Motivations

Let’s begin by motivating support vector machines. Recall our ridiculously
overused classification problem: identifying whether a car is cheap or expen-
sive, based on a set of features of that car.

Imagine that we are plotting some of our data in 2-dimensional feature space. In
other words, we are only extracting two features, X; and X5, from each car for
building our model. Furthermore, let’s label each point BLUE if it represents a
car that is cheap and RED if it represents a car that is labelled expensive.

We will try to learn a linear model of our features, parameterized by the weights
W1 and W5. Our model will output BLUE if Wy - X1 + W5 - X5 < 0 and RED
it Wy - Xq + Wy - X5 >=0.

15



This model will describe a linear separator of a collection of data. That linear
separator of our data could look as shown in Figure 11.

A

X1

Figure 11: Linear separator of our data

Here the datapoints above the line are classified as RED, while those below are
classified as BLUE. The important thing to see is that this is only one possible
linear separator of the data. However, we could envision another separator that
could separate the dataset into two colored halves just as well (shown in Figure
12).

In fact, there are an infinite number of possible separators that would split the
data perfectly! How do we choose among them?

Consider how we decided to label a datapoint as RED or BLUE. We computed
Wi - X1 + Wy - Xo and said if it was negative, we labelled the point BLUE.
Otherwise we labelled it RED. Intuitively, it seems that if the quantity W7 -
X1 4+ Wy - X5 for a given point is 15, we are more confident that it should be
RED than one for which the quantity is 1.

Alternatively, the more negative the quantity is for a point the more confident
we are that it should be BLUE. In fact, we can use this value to judge our
confidence for every single point!

Geometrically, this confidence for a point’s label can be represented as the per-
pendicular distance from the point to the separator. In Figure , we have des-
ignated the perpendicular distances to the separator for several sample points
with the GREEN lines.

Now imagine if we took the minimum distance to the separator across all the
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17



points in the dataset. This minimum value is called the margin. In Figure 14
we show the point that achieves the margin for the given separator.

A

X1 %

Figure 14: Margins shown

Optimal margins are at the core of support vector machine theory, and they
inform how we will pick the “best” linear separator among the infinite choices.
The way we will do this is by picking the linear separator that maximizes the
margin.

Put another way, each separator defines a certain margin (i.e. an associated
minimum perpendicular distance to the separator). Then, among the infinite
possible separators, we will pick the separator that maximizes the margin.

Make sure you really understand that last statement! Support vector machines
are often called max-margin classifiers for that exact reason. Given an op-
timal margin linear separator, the points with the smallest margins that are
closest to the linear separator are called the support vectors.

Training the SVM

So, how do we train a support vector machine? The full mathematical details
to describe the cost function we want to optimize are a bit beyond the scope of
this section, but we will give a brief description of the training cost function.

Given a collection of datapoints [(X1,Y1), (X2,Y2), ..., (Xn, Ys)] (where X are
the input features and Y are the correct output labels) and a vector of weights W
for our input features, finding the optimal margin classifier amounts to solving

18
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This cost function is basically a fancy way of saying that we want maximize the
margin, while ensuring the margin of each datapoint is greater than or equal to
1.

It turns out finding the optimum for this cost function is a convex optimization
problem, which means there exist standard algorithms for solving the problem.
This is good news for us because it means optimally training a support vector
machine is a tractable problem!

As a point of comparison, there exist some problems for which we cannot find
the optimal value in a computationally reasonable time. It may even take expo-
nential time to find the optimum!

The Kernel Trick

Thus far we have motivated support vector machines by only focusing on linear
separators of data. It turns out that support vector machines can actually learn
nonlinear separators, which is why they are such a powerful model class!

To motivate this idea, imagine that we have an input point with three features
X = (X1, X2, X3). We can transform the 3-dimensional vector X into a higher-
dimensional vector by applying a transformation function as follows: T(X) =
(X1, X2, X3, Xy - X1, Xo - Xo, X3+ X3).

Our transformation function did two things:

1) it created a 6-dimensional vector from a 3-dimensional one
2) it added nonlinear interactions in our features by having certain new fea-
tures be the squares of the original features.

Transforming features into a higher-dimensional space has some perks, namely
that some data which is not linearly separable in a certain-dimensional space
could become linearly separable when we project it into the higher-dimensional
space.

As a motivating example, consider the data in Figure 15 which is not linearly
separable in 2-d space.

It becomes separable in 3-dimensional space through an appropriate feature
transformation Figure 77.

Such input feature transformations are particularly useful in support vector
machines. It turns out that support vector machines formalize the notion of
these feature transformation function through something called a kernel.

19
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Without getting too much into the mathematical details, a kernel allows a
support vector machine to learn using these transformed features in higher-
dimensional space in a much more computationally efficient way. This is called
the kernel trick.

Examples of kernels that are frequently used when learning a support vector
machine model include the polynomial kernel and the radial basis function ker-
nel.

A really crazy mathematical property of the radial basis function is that it can
be interpreted as a mapping for an infinite-dimensional feature space! And yet
we can still use it to do effective learning in our models. That’s insane

Slacking Off

Thus far, we have assumed that the data we are working with is always linearly
separable. And if it wasn’t to begin with, we assumed we could project it into
a higher-dimensional feature space where it would be linearly separable and the
kernel trick would do all the heavy lifting.

However, our data may not always be linearly separable. We may find ourselves
in a situation as shown in Figure 17 where it is impossible to linearly separate
the data.

A
R
®

%
% ¥
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Figure 17: Non-linearly separable data

Moreover, recall that our original support vector machine cost function enforced
the constraint that every point needs to have a margin greater than or equal to
1.

21


https://en.wikipedia.org/wiki/Polynomial_kernel
https://en.wikipedia.org/wiki/Radial_basis_function_kernel
https://en.wikipedia.org/wiki/Radial_basis_function_kernel

But perhaps this condition is too strict for all cases. For example, enforcing
this condition for all points may make our model very susceptible to outliers as
shown in Figure 18.
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Figure 18: Support vector machine outlier diagram

To combat this problem, we can introduce what are called slack penalties into
our support vector machine objective that allow certain points to have margins
potentially smaller than 1. With these penalties, our new cost looks as follows:

1
minW§||T/V||2 —|—K~Zsi

such that Yi(WTXi) >1—s;foralli=1,...,n

si>0foralli=1,...m

Here the s; are our slack variables. Notice that we have changed the expression
we are trying to minimize. The value K is what is called a hyperparameter.

In a nutshell, this means we can adjust K to determine how much we want our
model to focus on minimizing the new term in our cost function or the old term.
This is our first example of a very important concept in machine learning called
regularization.

We will discuss regularization in a lot more detail in the next section. For now,
just understand that this new addition makes the support vector machine more
robust to nonlinearly-separable data.
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Final Thoughts

Support vector machines are very powerful model. They are great for handling
linearly separable data and with their various extensions can adequately handle
nonlinearly separable data scenarios

As part of the machine learning toolkit, it is a great go-to model to try when
starting on a new problem. However, one of its downsides is that using certain
kernels, such as the radial basis function kernel, can sometimes make the model
training slower, so be wary of that.

Test Your Knowledge

Support Vector Description
Slack Variables
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Decision Trees
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Figure 19: Decision tree meme

In this section we will discuss a wonderful model that is not only very powerful
but has very convenient interpretability. In fact, the underlying structure of the
model has very clear analogies to how humans actually make decisions.

The model we will be discussing is called decision trees. Decision trees are
so robust that some machine learning practitioners believe they offer the best
out-of-the-box performance on new problem domains. Sound exciting? Let’s
dive in!

Motivations

To motivate decision trees, let’s start with a hypothetical problem: deciding
whether or not we will pass our artificial intelligence exam this week. In other
words we want to build a model that, given a dataset of past exam experiences,
will output either a YES we will pass or NO we won’t. This will be done by
extracting some features from the dataset. So what features seem relevant for
this problem?

Well, for starters it may be important how much sleep we get the night before
the exam. In particular, if we get 8 or more hours of sleep, we have a much
higher chance of doing well (no scientific evidence for this number but it sounds
like it could be true). Now for an arbitrary exam that we want to classify, we
could represent our logic as a flowchart shown in Figure 20.

Note, we could stop here if we wanted and let our entire model involve this
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Figure 20: Depth 1 decision tree

single sleep question. But it seems like we could do better than this, since
we are disregarding so many other possible indicators for success on our exam.
Let’s continue to make our model more powerful!

Another possibly useful feature is whether the exam is in the morning or evening,.
Perhaps we aren’t really morning people and prefer to do things later in the day.
We can continue to build out our flowchart shown in Figure 21.

Notice how with this tree, there is a flow where we get less than 8 hours of sleep
but the exam is in the evening and so we still pass! The behavior of our model
for different features is all predicated on the dataset we are using to train the
model.

In this case, we must have had a collection of past exam datapoints where we
got less than 8 hours of sleep and took the exam in the evening, and hence we
passed the exam.

Now, we could continue to build out our model in this fashion. We may utilize
other attributes of our data such as the day of the week the exam is on. It turns
out this flow chart is our first decision tree!

Decision trees are defined by this hierarchical structure starting at some root.
Note that here our tree is technically inverted, since it is growing downwards.

However, this is traditionally how decision trees are visualized. At each level,
we select a feature to use for a binary split of our data. At the leaves of the
tree, we predict one of the possible output labels of our problem.
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Figure 21: Depth 2 decision tree

Decision trees are a very nice model family because once we’ve built the tree,
it’s relatively straightforward to understand how a model makes a prediction
for a given input. It literally does so in the same way we would use a flowchart,
starting at the top and traversing the branches according to the features of our
input. Simple, right?

Well, yes, assuming we already have a tree built out. But how do we choose the
features to split at each respective level of the tree? There are a lot of options,
and they could drastically impact our model’s predictions. We will explore how
to build a decision tree next.

Growing the Tree

It turns out that building an optimal tree is NP-complete, which is a fancy
way of saying that given an arbitrary dataset, there is no computationally effi-
cient way to determine an optimal tree. Because of this, building a tree always
involves some sort of greedy algorithm.

What this means is that when we are building our tree, we will choose features for
splits with metrics based on locally optimal considerations rather than globally
optimal ones. As a consequence, we may not get the absolute best-performing
tree, but we get the benefit of an optimization procedure that can be completed
in a reasonable amount of time.
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There are many metrics for picking these features to split, but we will focus on
one commonly used metric called information gain.

Information gain is very related to the concept of entropy in information the-
ory. In general, decision tree algorithms using information gain seek to build a
tree top-down by selecting at each level the feature that results in the largest
information gain. First we define the entropy of a tree T' as follows:

Entropy(T) = — Y _ p;logp;
=1

In our equation above, p; denotes the fraction of a given label in a set of data-
points in the tree. What does this mean? To make this concrete, let’s go back
to our example of determining the outcome of our artificial intelligence exam.

Imagine that we had a training set of 20 examples (a lot of our friends have
taken artificial intelligence courses). Recall that our example had two potential
labels: YES we pass or NO we don’t. Of those 20 samples, 12 friends passed,
and 8 did not. Therefore, at the beginning of our tree building, before we have
made any feature split, the entropy of our tree is:

12 12 8 8
EntrOPY(Toriginal) = _270 log % — % log ?0

~ 0.2922

How does this change when we choose a feature to split for our first level? Let’s
assume that when we split on whether or not we slept for 8 hours, we get two
sets of datapoints.

For the set with less than 8 hours of sleep, we have 10 samples, of which 7 did
not pass and 3 passed (this is why you need to get sleep before tests). For the
set with 8 or more hours of sleep, we have 20 - 10 = 10 samples, of which 9
passed and 1 did not. Hence the entropy for the tree’s children with this split is

7 7 3 3

Entropy (Split .g hours) = T log 0 10 log 10
~ 0.265
for the set with less than 8 hours and
. 9 9 1 1
Entropy(SphtZS hours) = T log 010 log 10
~ 0.1412

for the set with 8 or more hours. Let T be our original tree and f be the feature
we are considering splitting on. The information gain is defined as follows:
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Info Gain(T, f) = Entropy — Entropy (7| f)

In plain English, this is saying that the information gain is equal to the entropy
of the tree before the feature split minus the weighted sum of the entropy of the
tree’s children made by the split. Ok, not quite plain English.

Let’s make this concrete. For our example, the information gain would be:

10 10
Inf in(T =0.2922 — — - 0.265 — — - 0.1412
nfo Gain(T, f) = 0.29 50 0.265 50 0

~ 0.0891

Notice here that the % fractions represent the weights on the entropies of the
children, since there are 10 of the 20 possible datapoints in each child subtree.

Now when we are choosing a feature to split on, we compute the information
gain for every single feature in a similar fashion and select the feature that
produces the largest information gain.

We repeat this procedure at every single level of our tree, until some stopping
criterion is met, such as when the information gain becomes 0. And that’s how
we build our decision tree!

Pruning the Tree

The extraordinary predictive power of decision trees comes with a cost. In
practice, trees tend to have high variance. Don’t worry too much about what
that means exactly for now, as we will discuss it in greater detail when we talk
about the bias-variance tradeoff.

For our purposes, this means that trees can learn a bit too much of our train-
ing data’s specificity, which makes them less robust to new datapoints. This
especially becomes a problem as we continue to grow out the depth of our tree,
resulting in fewer and fewer datapoints in the subtrees that are formed. To deal
with this issue, we typically employ some sort of tree pruning procedure.

There are a number of different ways of pruning our tree, though we will focus
on a relatively simple one just to get a taste for what these pruning procedures
look like. The procedure we will discuss is called reduced error pruning.

Reduced error pruning essentially starts with our fully-built tree and iteratively
replaces each node with its most popular label. If the replacement does not
affect the prediction accuracy, the change is kept, else it is undone. For example,
assume we started with the tree in Figure 22

reduced error pruning after one iteration, could leave us with the tree in Figure
23.
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Figure 22: Depth 2 decision tree

This would happen if the number of FAIL labels on the two left branches ex-
ceeded the number of PASS labels. This could happen if there were 9 FAIL and
1 PASS points in the leftmost node, but only 1 FAIL and 3 PASS in the node
next to it. Hence we would replace these two nodes with the majority label,
which is FAIL.

Note, after we have done this pruning, we could certainly continue to prune
other nodes in the tree. In fact, we should continue to prune as long as our
resulting trees don’t perform worse.

There are many more complex pruning techniques, but the important thing
to remember is that all these techniques are a means of cutting down (pun
intended) on the complexity of a given tree.

Final Thoughts

Now that we are wrapping up our tour of decision trees, we will end with a few
thoughts. One observation is that for each split of our trees, we always used a
binary split. You might feel that it seems very restrictive to only have binary
splits at each level of the tree, and could understandably believe that a split
with more than two children could be beneficial.

While your heart is in the right place, practically-speaking non-binary splits
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Figure 23: Pruned decision tree
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don’t always work very well, as they fragment the data too quickly leaving
insufficient data for subsequent feature splits. Moreover, we can always also
achieve a non-binary split with a series of consecutive binary splits, so it’s not
like non-binary splits give us any more expressive power.

Finally, while we only discussed a classification example, decision trees can also
be applied to regression. This is yet another reason why they are so versatile!

Test Your Knowledge
Tree Labelling
Misclassification Rate

Tree Learning

Example Traversal

Decision Boundary

Tree Disadvantages

Node Impurity
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Your Closest Neighbors

JUST REMINDING YOU:

Figure 24: Knn meme

In this section, we are going to study an interesting flavor of supervised learning
models known as k-nearest neighbors.

K-nearest neighbors is a bit of an outlier among models since it doesn’t formally
have a training procedure! Because of this, it is a relatively straightforward
model to explain and implement.

The Model

K-nearest neighbors works as follows: assume we receive a new datapoint, P,
that we are trying to predict an output for. To compute the output for this
point, we find some number of datapoints in the training set that are closest to
P, and we assign the majority label of its neighbors to P.

Woah, that was a mouthful! Let’s break this down with a diagram. Assume we
are dealing with a binary classification task, and we are trying to predict a label
for an unknown P (shown in GREEN) as shown in Figure 25:

Let’s say we use the 3 nearest neighbors to classify our unknown point (Figure
26).
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Figure 26: K nearest neighbors identified
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Among the 3 nearest neighbors of P, the majority output is a red X, so we
assign the RED label to P (Figure 27).

4 xR

Figure 27: K nearest neighbors labelled

And that’s basically k-nearest neighbors in a nutshelll The really important
thing to realize is that we are not really fitting a model to our data.

What I mean is that because we need to find the labels of a point’s nearest
neighbors when we are trying to classify it, we actually need to always keep
track of all of our training data.

Typically when we are training a supervised model, we understand that the
training process may take a lot more time than the testing process, which is the
point where we release a model to the wild to predict outputs for new points.

In fact, we hope that will be the case because training is always something that
we expect will be done before deployment on our own time, and then the testing
becomes important when we deploy the new model to the real world.

However, k-nearest neighbors turns that intuition upside down. Training time is
basically 0, except perhaps for the cost of storing our training set somewhere.
In exchange, testing time is actually quite substantial because for each new point,
we need to find the nearest neighbors to it. This literally requires computing
the distance from our point to every single point in the training set every time.
This could take a long time if our training set is large.
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Some Mechanics

While k-nearest neighbors is a relatively straightforward model, there are still
a few details worth discussing with regards to how it is used in practice.

First off, we should discuss what distance metric we use for determining prox-
imity of neighbors. In practice, when we are computing the distance between
two points, we tend to use an Ly (also known as Fuclidean) distance, although
other distance metrics such as Ly (also known as Manhattan) can be used.

Given two points U = (Uy,Us,...,U,) and V = (V1,V5,..., V) these distance
are defined as follows:

Lo(U, V) = /(U = V)2 + ... + (U, — V)2

LU, V) =|(U1 = V)| + ... +|(Un = V)|
The distance metric chosen often depends on the nature of our data as well as
our learning task, but Lo is an often used default.

Another detail worth discussing is what the optimal choice of k, namely the
number of neighbors we use, is. In practice, using a smaller number of neighbors,
such as k = 1, makes for a model that can may overfit because it will be very
sensitive to the labels of its closest neighbors.

We will discuss overfitting in greater detail in upcoming sections. As we increase
the number of neighbors, we tend to have a smoother, more robust model on
new data points. However, the ideal value of k really depends on the problem
and the data, and this is typically a quantity we tune as necessary.

Final Thoughts

K-nearest neighbors is a unique model because it requires you to keep track of
all your training data all the time. It is conceptually simple and data-intensive.
As a result, it is often used as a baseline model in problems with small to
moderate-sized datasets.

Furthermore, while we used a classification example to motivate the algorithm,
in practice k-nearest neighbors can be applied to both classification and regres-
sion.

Test Your Knowledge
KNN Description
Lowering K

Implementing KNN
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Controlling Your Model’s Bias

Figure 28: Bias-variance meme

In this lesson, we are going to take a deeper dive into some of the theoretical
guarantees behind building supervised learning models. We are going to discuss
the bias-variance tradeoff which is one of the most important principles at
the core of machine learning theory.

Besides being important from a theoretical standpoint, the bias-variance trade-
off has very significant implications for the performance of models in practice.
Recall that when we are building a supervised model, we typically train on some
collection of labelled data.

After the training is done, we really want to evaluate the model on data it
never saw during training. The error incurred on unseen data tests a model’s
ability to generalize, and hence it is called the generalization error. The
generalization error will be an important idea in the remainder of this section
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and in our broader machine learning journey.

As we begin our discussion on the bias-variance tradeoff, we will be posing the
following questions: how good can the performance of any machine learning
model ever get on a problem? In other words, is it possible to reduce the
generalization error of a model on unseen data to 07

Motivations

Before we dive into these questions, let’s motivate them by looking at some
concrete examples of data. Imagine that we had a training set that looked like
Figure 29.

\

Figure 29: Quadratic data

If we are trying to learn an accurate supervised learning model on this data,
it seems that something like a quadratic fit would be pretty good. Fitting a
quadratic-like function to this data would look like Figure 30.

This seems reasonable. But why does this seem more reasonable than a linear
fit like the one in Figure 317

One thought we may have is that this linear fit seems to not really pick up on
the behavior of the data we have. In other words it seems to be ignoring some
of the statistical relationships between the inputs and the outputs.

We may even be so bold as to say that the fit is overly simplistic. This simplicity
of the model would be especially pronounced if we received a new point in the
test set, which could be from the same statistical distribution. This point could
look as like Figure 32.

In this case, our linear fit would clearly do a poor job of predicting a value for
the new input as compared to the true value of its output as in Figure 33.

In the machine learning lingo, we say that this linear fit is underfitting the
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Figure 30: Quadratic data with quadratic fit
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Figure 31: Quadratic data with linear fit

\

Figure 32: Quadratic data with test point
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Figure 33: Quadratic data with linear test point

data. As a point of comparison, now imagine that we fit a more complex model
to the data, like some higher-order polynomial (Figure 34).

Figure 34: Quadratic data with polynomial

Here, we have the opposite problem. The model is fitting the data too well. It
is picking up on statistical signal in the data that probably is not there. The
data was probably sampled from something like a quadratic function with some
noise, but here we are learning a far more complicated model.

We see that this model gives us poor generalization error when we see how far
the test point is from the function (Figure 35).

In this case, we say that we are overfitting the data.

Compare the last fit’s poor generalization to our quadratic fit on the data with
the test point, shown in Figure 36.

This is clearly much better!
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Figure 35: Quadratic data with test point polynomial
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Figure 36: Quadratic data with test point quadratic
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Formalizing Model Error

Now we are ready to formalize the notion of bias and variance as they pertain
to a model’s generalizability. It turns out that in supervised learning there are
always three sources of error we have to deal with when we are trying to build
the most general model.

One source of error is called the irreducible error, which is caused by the
inherent noisiness of any dataset. This source of error is entirely out of our
control and hence irreducible.

The two sources of error that we can control are bias and variance, and they
are basically always competing.

The nature of this somewhat confrontational relationship is that incurring
a decrease in one of these sources of error is always coupled with
incurring an increase in the other. This can actually be demonstrated
mathematically, though we will gloss over this derivation for now.

What do these sources of error actually mean? Bias is caused when we make
some incorrect assumptions in our model. In this way, it is analogous to human
bias.

Variance is caused when our algorithm is really sensitive to minor fluctuations
in the training set of our data. In the examples we presented above, the complex
polynomial fit is said to have a high variance (and hence a lower bias).

This is because it is really sensitive to the nature of the training data, capturing
a lot of its perceived behavior. Too sensitive, in fact, because we know the
behavior it is capturing is deceptive. This becomes clear when we are presented
with a new test datapoint.

We can also get models with high variance when our model has more features
than there are datapoints. In this case, such models tend to be overspecified,
with too many sources of signal but not enough data to reinforce the true signal.

Meanwhile, the linear fit in our motivating example is said to have a high bias
(and hence a lower variance). It captures very little of the behavior in the
training data, making oversimplifying assumptions about the relationship be-
tween the features and the output labels. This is evidenced by the fact that the
model believes the data was generated by a line when in fact we as omniscient
bystanders know it has a quadratic relationship.

Final Thoughts

So what does all this mean for our attempts to get the best model? In prac-
tice, this means that there will always be these dual sources of error (bias and
variance) that we will have to balance and calibrate.

We can never hope to get perfect generalization, but through empirical analyses
we can try to reduce the bias by adding more complexity to our model or reduce
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the variance by simplifying some of the assumptions of the model.

We will discuss exact techniques on how to do this in later lessons. The impor-
tant thing for now is to be aware of the existence of these two sources of error
and how they affect our model’s generalizability.

Test Your Knowledge

Bias-Variance Explanation

Low Bias High Variance
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Why Did You Choose This Model?
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Figure 37: Source Toward Data Science

In this section, we are going to be continuing our discussion of practical ma-
chine learning principles, specifically as they pertain to the details of model
selection. This selection is often done by assessing the generalization error of
a model as compared to other models.

Note that in this lesson, we are making no assumptions about the particular
model class we are dealing with, how many features, etc. In fact, the principles
we will discuss could be applied to a collection comprised of diverse model
classes such as logistic regression, support vector machines, neural networks,
and anything else.

For this lesson, we are more concerned with how we can use the data we have
and the models we have built to pick the best one, irrespective of model specifics.
So let’s get to it!

Motivations

Let’s imagine that we have a classification dataset consisting of 100 datapoints
and their associated labels. We want to pick the best model from among a
support vector machine and a logistic regression to use.
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One seemingly reasonable place to start is to take the support vector machine,
train it on the entire dataset, and once it is trained see how many errors it
makes on the original 100 datapoints it was trained on.

We could then do the same for the logistic regression, and then at the end
compare the number of errors each model makes. Perhaps the support vector
machine makes 10 incorrect classifications and the logistic regression makes 13,
so we pick the support vector machine.

While this may seem like a reasonable way to model select, it is actually very
flawed. Why?

It turns out when we are building a performant machine learning model, we are
really most interested in the model’s generalization ability. Recall that this
refers to the model’s error when tested on data it has never seen before.

We don’t actually care how the model performs on data it has been trained
on because that will just encourage selection of the model that overfits on the
training data the most. As we saw in our discussion on the bias-variance tradeoff,
such a model could completely misrepresent the true nature of the data we are
analyzing in our problem. So what do we do to combat this issue?

Fixing Model Selection

Imagine that instead of using the full 100 datapoints we have for training our
models, we randomly select 75 of them to be our training set and the remaining
25 to be our testing set.

Now, as expected, we only train each of our models using the training set, and
then we evaluate each of them just once on the testing set, once we have
completed training. The error that each model incurs on the testing set will
then determine which model we pick.

This strategy avoids our problem from before and also gives us a much more
reasonable means of assessing model generalization error. In practice, when we
use this held-out-test-set strategy, we will typically hold out anywhere from
10 — 30% of our data set for testing purposes, shown in Figure 38.

Trainin Testin

Figure 38: train test machine learning split

Another common strategy that is used is to split up your dataset into three sets:
training set, validation set, and testing set.
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Using this type of division, we would train on our training set and use the
validation set to get some sense for the generalization error of our models. Then
finally, once we selected the model that performed best on the validation set,
we would evaluate it once on the testing set to get an absolute value for the
model’s performance.

This is often the strategy that is employed during machine learning competitions,
where the training and validation sets of some data is released, and the testing
set is not even given to the competitors.

Instead, once a competitor wants to submit their best performing model, they
submit it and then the model’s score is the error it incurs on the hidden testing
set.

Dealing With Data Sparsity

What is the issue with these schemes for evaluating a model? Notice that
when we are splitting up our dataset into a training/testing set for example,
we are basically deciding that the testing set will not be used at all, except for
evaluation at the end. In a sense, we are almost throwing away some of our
data which we can’t use to train our model.

But there are many domains where data collection is very expensive, such as
medical imaging. Imagine if our entire dataset consisted of 10 examples! Could
we really afford to train a model using 8 or fewer data points? To do so would
negatively impact how good of a model we could train.

In this way, the schemes we have discussed are perfectly valid when we have
a lot of data to spare. So is model selection doomed without sufficient data?
Thankfully there is another very commonly used method called k-fold cross-
validation that resolves our problem.

The way k-fold cross-validation works is by splitting up our dataset into some
number of equally-sized partitions called folds. Let’s make this concrete by
assuming we are using 4 folds. This means we are going to train and evaluate
each model 4 times.

During the first iteration, we are going to take the first fold as shown in Figure
39.

Figure 39: K-fold cross validation fold 1

That first fold will function as our testing set. In other words, we will train on
all of the remaining data, except that first fold, and then at the end test our
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model on that fold. This will give us some error that we will call Fj.

In the second iteration, we take the second fold of our data as shown in Figure
40.

Figure 40: K-fold cross validation fold 2

and again train on all the data except that second fold. At the end of training,
we then test on that second fold, giving us a new error: Es. We then repeat
this for the remaining folds:

Training on all but the third fold and then testing on the third fold gives Figure
41.

Figure 41: K-fold cross validation fold 3

This produces an error F5. And finally repeating for the fourth fold (Figure 42)

Figure 42: K-fold cross validation fold 4

give us an error Fj.

Once we have tested on all the 4 folds, we compute the final generalization error
of our model as the average of F, Fs, F3, and Ej.

One important note is that each fold is an independent run, where we train a
new model from scratch. This means no model weights are transferred between
folds.

In practice, we can use as many folds as we want, depending on the size of our
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dataset. In situations of extreme data sparsity, we can even use what is called
leave-one-out cross validation.

This is a special case of cross-validation, where each fold is literally a single
datapoint! So during one iteration of training, we train on all but one datapoint,
and then test on that datapoint. Notice that this strategy would use n folds
where n is the number of points in our dataset.

However, for most use cases using anywhere from 5— 10 folds is often reasonable,
and can give us a sufficient sense for the generalization error of a given model.

K-fold cross-validation is a nice solution to our original problem, but it also
has its downsides. In particular, when we use k-fold cross-validation we have to
actually train and evaluate our system using each of the folds.

Training and testing for each of the folds can be a very computationally expen-
sive operation, which means that model selection can take very long. It then
becomes very important to pick a reasonable number of folds (a good number
but not too many) when you are performing cross-validaton.

Final Thoughts

As we finish up this lesson, keep in mind that all these model evaluation and
selection algorithms are used extensively in practice. It is basically guaranteed
that anytime you are building a new model, you will inevitably employ one
of these techniques. Which technique you use will depend on your data and
problem characteristics, so remember to be flexible to all the options.

Test Your Knowledge
Definition

Cross-validation Techniques
Wrong cross-validation

Cross-validation time series
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What Features Do You Want?
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Figure 43: Feature selection meme

We are now going to start discussing another very important bit of practical
machine learning methodology: feature selection.

Feature selection is tightly related to model selection and some might even argue
that it is, in fact, a type of model selection. We won’t get too hung up on the
semantics, and instead jump right into motivating why it’s such an important
technique.

Motivations

Consider the following scenario: you are dealing with a supervised problem
domain where you have come up with a number of features that you deem
could be important to building a powerful classifier.

To make the problem concrete, let’s say you are trying to build a spam clas-
sifier and you've come up with 10,000 features, where each feature denotes
whether a given email you are trying to classify contains (or doesn’t) one of
10,000 possible words. So some of the features could be CONTAINS(“the”),
CONTAINS(“cat”), or CONTAINS(“viagra”).
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Let’s say further that you have only 500 emails in your entire dataset. What’s
one big problem you may encounter?

WEell, in this case, you have far more features than you have data points. In
such situations, your model will be overspecified. In other words, you have a
very high chance of overfitting on your dataset.

In fact, it’s quite likely that most of the features you’ve thought of won’t actually
help you build a more robust spam classifier. This is because you are adding
a feature for each of 10,000 words, and it seems unlikely that a feature like
CONTAINS(“the”) will help you determine a spam email.

Feature selection seeks to handle the problem of picking out some number of
features that are the most useful for actually building your classifier. These are
the features that give you the most powerful signal for your problem. So how
do we do that?

A First Pass at Selection

In turns out there are quite a few techniques commonly used for feature selection.
We will describe a few of them.

The first selection method we will begin with is called best-subset selection.
This selection method involves trying out every possible subset of features from
the entire collection.

Therefore if we had three possible features (A, B, ('), we would consider the
subsets: (4), (B), (C), (A,B), (A,C), (B,C), (A,B,C). For each of these
feature subsets, we could run some sort of cross-validation technique to evaluate
that feature set (for a review of cross-validation check out the previous lesson).

The feature set which achieved the lowest generalization error would be
selected for our best-performing model. Here, lowest generalization error refers
to the average error across the folds of our cross-validation.

What’s one issue that comes up with this technique? Well, notice how even for
a very small total feature set (3 in this case), we still had 7 feature subsets to
evaluate.

In general, we can mathematically demonstrate that for a feature set of size N,
we would have 2V — 1 possible feature subsets to try. Techniqually we have 2V
subsets, but we are disregarding the empty subset consisting of no features.

In other words, we have an exponential number of subsets to try! Not only
is that a HUGE number of feature subsets even for a relatively small number,
but on top of that, we have to run cross-validation on each feature subset.

This is prohibitively expensive from a computational standpoint. Imagine how
intractable this technique would be with our 10,000 feature set for building our
spam classifier! So, what do we do?
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Improvements in Feature Selection

Notice that our best-subset feature selection technique guarantees finding the
optimal feature set, since we are literally trying every possible combination.
This optimality comes at a price, namely waiting an impossibly long time for
finding the best subset on even small problems.

But what if we don’t have to strictly achieve optimality? What if for our
purposes, all we need is good enough? Forward-stepwise selection helps us
do just that: get good enough (Yay, C’s get degrees).

How does it work? Forward step-wise selection basically functions as follows:
Assume we have k features in total to choose from. We will order these features
as f1, fa, -, fr, and let S denote our best performing feature set so far. We
execute the following procedure:

1) Initially start with S being the empty set (so no features).

2) Repeat the following process: for each of the k features we can choose
from, let Si be the feature set with feature f; added to S. Run cross-
validation using Sj. At the end assign S to the best performing S among
all the Sj, created during the loop.

3) Run the loop in 2) until our set contains a number of features equal to
some threshold we choose.

Hence, at the beginning S is empty. Let’s say we have three potential features
f1, f2, and f3. We will run cross-validation three times, adding a single feature
to S each time. Hence we will have one run with the feature set {f1}, one with
{f2}, and one with {fs}.

The feature set with the best generalization error will be used for S. We then
repeat this process, greedily adding a single feature to our new S each time,
based on best generalization error.

And that’s it! Notice that for this particular algorithm we can only run cross-
validation up to order k? times (can you see why?) This is clearly MUCH
better than running cross-validation an exponential number of times, which is
what we get with best-subset selection.

There is another related feature selection technique called backward-stepwise
selection where S is initialized to the set of all features, and then during
each iteration of 2) above, we remove a feature instead of add a feature. The
remainder of the algorithm is the same as forward-stepwise selecion.

Final Thoughts

Besides the aforementioned techniques, there are a number of more sophisti-
cated feature selection approaches. These include simmulated annealing and
genetic algorithms, just to name a few. For now, we will leave discussion of
those techniques to another time! Regardless, feature selection is an important
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technique to add to the toolbox, as it enables us to be more careful in how we
build out our models.

Test Your Knowledge
Feature Extraction
Best Subset Features

Feature Selection Examples

Adding Features Example
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Model Regularization

NOT SUREIF GOOD MODEL...

ORJUSTYOVERFITTING

memegenerator.net

Figure 44: Regularization meme

In this section, we will continue with our odyssey through practical machine
learning methodology by discussing model regularization. Regularization
is an immensely important principle in machine learning and one of the most
powerful ones in the practitioner’s toolkit. Excited? Let’s get started!

Regularization is another way to address the ever-present problem of model gen-
eralization. It is a technique we apply to deal with model overfitting, particularly
when a model is overspecified for the problem we are tackling.

We have actually already seen regularization previously. Recall that when we
were studying support vector machines, we introduced slack variables to make
the model less susceptible to outliers and also make it so that the model could
handle non-linearly separable data.

These slack variables represented a means of regularizing the model, through
what we will show later is called L; regularization.

There are many types of regularization, some that can be applied to a broad
range of models, and others that we will see are a bit more model-class specific
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(such as dropout for neural networks).

L, Regularization

Traditionally when we are building a supervised model, we have some number
of features we extract from our data. During training, we learn weights that
dictate how important each feature is for our model.

These weights tune the strength of the features through interactions ranging
from the simple linear ones (as in the case of linear regression) to more complex
interactions like those we we will see with neural networks.

For the time being, let’s assume that we are dealing with linear regression.
Therefore, we have a weight vector A = (A4, Ag, ..., Ag) for our k features. Lo
regularization is the first type of regularization we will formally investigate,
and it involves adding the square of the weights to our cost function.

What that looks like in mathematics is as follows: Recall that for linear regres-
sion we were trying to minimize the value of the least-squares cost:

Adding an
Lo

penalty, modifies this cost function to the following:

n

k
C(X) == S(F(X) - V2 + 1.3 a2

i=1

So, this cost function involves optimizing this more complex sum of terms. No-
tice that now our model must ensure that the squared magnitude of its weights
don’t get too big, as that would lead to a larger overall value of our cost.

In practice, having smaller weight magnitudes serves the purpose of ensuring
that any single feature is not weighted too heavily, effectively smoothing out
our model fit. This is exactly what we want to do to prevent overfitting.

You may have noticed that we also have this extra term L that we multiply
through in our Lo penalty. L as you may remember is called a hyperparameter
and is something that is typically tuned (i.e. a good value is chosen) during
cross-validation or model training.

We can do some simple analysis to understand how L affects our cost. If L is
really, really small (as in close to 0), it’s as if we are not at all applying an Lo
penalty and our cost function degenerates to the original cost function we were
optimizing before.
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However, if L is really, really big, then our cost will focus solely on minimizing
the value of our Ly penalty. In practice, this amounts to sending all of our
weights toward 0. Our model basically ends up learning nothing!

This makes sense because if we focus very hard on counteracting the effects of
overfitting, we may effectively end up underfitting. In practice, there is a sweet
spot for the L parameter which depends on our data and problem.

A quick note on terminology: you may also sometimes see Lo regularization
referred to as ridge regression, though for our purposes we will continue to
call it Ly regularization. While we focused on linear regression to introduce Lo
regularization, practically speaking this technique can be applied to many other
model classes.

L, Regularization

We can now move on to discussing L; regularization. This technique is con-
ceptually similar to Ly regularization, except instead of adding the term

k
LY A
i=1

to our cost, we add the term

Kk
L-Y |4l
i=1

That’s it! As mentioned previously, we’ve already seen L regularization in our
slack variables in the support vector machine cost. Notice how with our L,
regularization term, we can use the same logic for tuning the L parameter as
with Lo regularization.

While L; regularization seems pretty similar mathematically, it has quite differ-
ent implications for feature selection. It turns out that one of the consequences
of using Ly regularization is that many weights go to 0 or get really close to 0.

In that sense, L; regularization induces stricter sparsity in our feature
set. This effectively means that many of the features aren’t counted at all in
our model. This makes it more like a traditional feature selection algorithm,
as compared to Lo regularization that achieves a smoother continuous set of
weights for our feature set.

Final Thoughts

In addition to these regularization techniques, there are many more ways to
regularize a model out there, which we won’t cover. In practice, the type of
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regularization you use very often depends on how you want to control your
feature set. But regardless, it is a hugely important technique to keep under
your belt as you venture into the machine learning jungle!

Test Your Knowledge
Reasons for Regularization
L1/L2 Differences

L1 over L2
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Join the Ensemble
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Figure 45: Source Analytics Vidhya

As its name suggests, the core idea of ensembling is about combining a collec-
tion of models to get a more performant model. This is analogous to the idea of
combining individual musical instruments to get an orchestral ensemble of har-
monious sounds. This lesson will be about how we can achieve that harmonious
sound in machine learning .

Ensembling is an extremely powerful technique and is often a surefire way to
squeeze out a few percentage points of performance on any task you tackle.

For example, the winning entries of the Netflix challenge in 2007 were all so-
phisticated ensembled systems. Ensembling often can either help us get a more
performant model or help address issues of overfitting by reducing our model
variance.

Put the Model in the Bag

The first technique for ensembling we will study is called bagging or bootstrap
agggregating. How does it actually work?

Say we have a dataset containing N datapoints. Traditionally, we would train
a single model on this dataset, using some type of dataset splitting or cross-
validation to assess the model’s generalization error.

With bagging, we take our dataset and generate K bootstrapped smaller
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datasets by randomly sampling some number M of datapoints with replace-
ment from the original dataset. Phew that was a mouthful!

Let’s take a concrete example to illustrate our point. Assume we have a dataset
consisting of N = 6 points and we want to generate K = 3 smaller datasets
with M = 4 points each. That would look as shown in Figure 46.

{X17X27X37X47X5aX6}

Dataset 1 = {XQ,X4,X6,X3}
Dataset 2 = {Xl,Xg,X4,X5}
Dataset 3 = {Xg,X@,Xz,Xl}

Figure 46: Bootstraped datasets

Note that because we are randomly sampling with replacement, points may be re-
peated in the smaller datasets. These smaller datasets are called bootstrapped
datasets.

Now we train a separate model per bootstrapped dataset. When we are done we
will have a mega model. When we want to label a new input, we run it through
each of the models trained on the bootstrapped datasets, called bootstrapped
models. We then average their outputs.

In the case of classification, we can simply take the majority label output by
the bootstrapped models.

In the case of regression, we can numerically average the bootstrapped models’
outputs. An ensemble of three bootstrapped classification models with their
predictions being aggregated would look as shown in Figure 47.

For some high-level intuition about bagging, consider that by having each boot-
strapped model learn using datapoints that are a subset of the total dataset, we
allow for each model to learn some statistical regularities without overempha-
sizing any particular behavior.
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In other words, by having many small models we cast a wider net in capturing
the full dataset behavior. Bagging is often employed with decision trees, though
it can be applied to any model class.

Getting a Boost

Boosting is a very different flavor of ensembling that is also extremely powerful.
Many different boosting algorithms have been developed, though here we will
focus on one of the more canonical techniques: adaboost. As with bagging,
boosting involves training a collection of models on a dataset, though the exact
procedure is very different.

Let’s describe the procedure through a concrete example. Assume we have
4 points in our training dataset, and we are building a model for a binary
classification task.

We start off by associating a numerical weight with each of the datapoints and
use the weighted dataset to train a model. Let’s call this trained model M;.
Note the weights begin with the same value, which we will just set to 1 for now.
This looks like Figure 48.

Training Dataset = {(Xlayl)a (XQ, Y'Q)a (X3) Yr3), (X47 Yzi)}

.

Train M; using weights of 1 for each datapoint

Figure 48: Model boosting Step 1

Next we compute how many of the datapoints our model miscalculated. This
miscalculation error is used to associate a weight for the entire model M7, which
we will call Wj.

Furthermore, we now update all the weights on the dataset, upweighting those
which were mispredicted and downweighting the others. This looks like Figure
49.

We now use this newly weighted dataset to train a fresh model Ms. This is then
used to compute a new weight for My, which we will call Ws.

We continue this procedure of reweighting the dataset, training a new model,
and then using the prediction error to associate a model weight.

Let’s say we run this for 5 iterations. At the end, when we are predicting for
a new input X, we take the predictions of our models M, .., My and form a
majority vote as shown in Figure 50.
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M; (X;) = CORRECT
M; (X5) = CORRECT
M;(X3) = WRONG
M;(X,) = WRONG

Compute weight Wy for M;

l

Reweight dataset to put higher weights
on misclassified points

Figure 49: Model boosting Step 2

Mensemble (X) — Z Wi - M; (X)

Figure 50: Model boosting Step 3
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In practice, the weights determined for the models tend to favor those models
which were more accurate classifiers on the dataset. When we are building our
initial “naive” models in the early stages of boosting, we are perfectly okay with
training underperformant models.

In fact, that is what makes boosting such a beautiful and elegant technique: it
demonstrates that you can take a collection of weak models and combine them
to form a strong model.

Additionally, because we are training multiple models on effectively diverse
datasets, we tend to reduce overfitting in our final boosted model.

Random Forests

We will now very briefly spend some time discussing a concrete ensembled model
that is one of the best go-to models to employ for new tasks. This technique is
called random forests, and it is an ensembling strategy for decision trees.

Random forests are often used to address overfitting that can happen in trees.
It does this by performing a type of feature bagging. What this means is that
during the procedure, we train individual trees on bootstrapped subsets of the
data as in traditional bagging.

However, the trees that are created only use a random subset of the total feature
set when they are being built. Recall that this is different from how trees are
traditionally built, where during building we consider the full set of features for
each split. Using a subset of the features at each split has the effect of even
more strictly decorrelating the trees across the smaller datasets.

At the end, the new trees are combined as in normal bagging to form our mega
model. Random forest are very nice models because they get the expressive
power of decision trees but combat the high variance that trees are susceptible
to.

Final Thoughts

We will end this lesson with a few additional notes. While ensembling is very
powerful, it can be a very costly operation. This is because oftentimes in en-
sembling techniques we must train many models on a given dataset.

Because of this ensembling is often only used when you are trying to squeeze out
a bit more performance on a certain problem. That being said, it is a fantastic
technique for reducing overfitting in models.

Test Your Knowledge

Ensembling Uses
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Model Evaluation

“EVALUATION®

Figure 51: Evaluation meme

Thus far in our study of various machine learning models, we have often alluded
to evaluating our models. Evaluation has been especially relevant when training
and performing cross-validation.

Evaluation is also very important when we have successfully trained a model
and are ready to say “Based on such-and-such measure, this is the quality of
this model.”

Metrics in other situations usually refer to evaluating some measure of success
that allows us to quantitatively compare one value against another.

For example when we are talking about stock analysis, we may refer to metrics
such as the price-to-earnings ratio of a company’s stock, or we may refer to a
company’s market capitalization.

What do such metrics look like for machine learning models? It turns out
there are a few commonly-used evaluation metrics both for classification and
regression. This lesson will introduce a few of these metrics and describe what
they are meant to capture.
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Accuracy

Accuracy is one of the most fundamental metrics used in classification. In
its most basic terms, accuracy computes the ratio of the number of correct
predictions to the total number of predictions:

#Correct Predictions
Total # Predictions

Accuracy =

For example, if we are doing a binary classification predicting the likelihood that
a car is cheap or expensive, we may predict for a dataset of five cars (CHEAP,
CHEAP, EXPENSIVE, CHEAP, EXPENSIVE).

If in reality the cars are (CHEAP, CHEAP, CHEAP, EXPENSIVE, EX-
PENSIVE), then our accuracy is % = 60%. In this case our model is not doing
a great job of solving the task.

Generally, accuracy is a good place to start with classification tasks. Sometimes,
however, it is not a sufficient metric. When is that the case? To answer this
question, we have to introduce a little more terminology.

In classification, a true positive is a positive label that our model predicts
for a datapoint whose true label is also positive. For our running example, we
can denote a CHEAP prediction as a positive one, so our model had 2 true
positives.

A true negative is when our model accurately makes a negative prediction. In
our running example, there are 2 EXPENSIVE cars of which our model labels
1 correctly, so the number of true negatives is 1.

A false positive is when our model predicts a positive label but the true label
is negative. In the example, our model predicts CHEAP a single time when in
fact the label was EXPENSIVE, so we have 1 false positive.

Similarly, a false negative is when our model predicts a negative label but
the true label was positive. In our example, our model predicts EXPENSIVE
once when in fact the label was CHEAP, so the number of false negatives is 1.

With these definitions in place, we can actually rewrite our definition of accuracy.
Letting TP = True Positive, TN = True Negative, FN = False Negative,
and FP = False Positive we have:

A TP+ TN
ccuracy =
Y TP+YTN+FP+FN
Given this definition, we see that our accuracy is ﬁ = 60% as we had

before.

So why introduce all this terminology? All these new terms will help us to
understand when accuracy is lacking as a metric.
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Consider the example of car classification from several lessons ago, and imagine
that we are classifying a dataset of 100 cars. Let’s say that our model has 2
true positives, 1 false positive, 7 false negatives, and 90 true negatives.

In this case, our model’s accuracy would be 2—5-3(—;% = 92%. That sounds
great, right? Well, maybe at first.

But let’s think about the label distribution of our car dataset. It turns out we
have 90 + 1 = 91 EXPENSIVE cars but only 2 + 7 =9 CHEAP cars. Hence
our model identified 90 of the 91 EXPENSIVE cars as EXPENSIVE, but
only 2 of the 9 CHEAP cars as CHEAP.

This is clearly a problem, where our accuracy metric is giving us an incorrect
signal about the quality of our model.

It turns out that when we have a large disparity in our label distribution (91
EXPENSIVE cars vs. 9 CHEAP cars), accuracy is not a great metric to use.
In fact if our system had literally only predicted EXPENSIVE for every new
car it received as an input, it would still have had a 91% accuracy.

But clearly not all cars are EXPENSIVE. It turns out we need a more fine-
grained metric to deal with this issue.

F| Score

The F} score does a better job of handling the label-disparity issue we encoun-
tered with accuracy. It does this by leveraging two measures: precision and
recall. These two quantities are defined as follows:

brecision — TP
recision — TP + FP
TP
Recall = ———
= TPYFEN

For our 100-car dataset above, the precision of our model would be 2-271 = 66.6%,
while the recall would be ﬁ = 22.2%. Ouch!

The F; score is then defined as:

Fl=2 Precision - Recall

" Precision + Recall

Our current model would receive an F) score of 33.3%. All of a sudden our
model seems MUCH worse. That’s a good thing because the model learned to
completely disregard predicting one entire label in our dataset. This is really
bad. Hence the F; score penalized it substantially.

In practice, when it comes to classification tasks, the F} score is more often used
as a metric because it gives a more balanced measure of a model’s performance.
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Mean Absolute Error

Let’s shift gears a bit to discuss a commonly-used metric for regression tasks:
mean absolute error. If on a 3 point dataset, we have a model outputting the
values Y7, Ys, Y3 and the true values are G1, G2, GG3, then the mean absolute
error is defined as:

3
Zi:1 ‘yz‘ - !]i|
3

Mean Absolute Error =

in other words, the average of the absolute errors. More concretely, if our model
outputted (0.1,—1.3,0.8) and the true values are (—0.4,—0.3,1), then the mean
absolute error would be:

0—1—(=0.4)|+|— 1.3 — (—0.3)| + 0.8 — 1]
3

MAE =

~ 0.767

While relatively straightforward, mean absolute error is a standard way of as-
sessing the quality of regression models.

Final Thoughts

The collection of metrics we discussed is only meant to provide a taste of the
ways we can evaluate models. There are many, many more means of performing
evaluation that are used by the scientific community.

While we introduced all these different metrics, we never discussed what a good
score for a metric is. It turns out there is no one golden number for any metric.
The score you should be aiming for is, of course, as close to perfect as possi-
ble. However, how reasonable perfection is depends mainly on your data, how
complex it is, how learnable your problem is, etc.

Another important thing to remember is never to put all your eggs in one
basket when evaluating a model and assume that excellent performance on a
single metric definitely demonstrates the superiority of a model.

We'll end this lesson with a relevant note of caution from economist Charles
Goodhart: When a measure becomes a target, it ceases to be a good measure.

Test Your Knowledge
Precision Example

F1 Definition

Calculate F1

Binary Confusion Matrix
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Market Basket Analysis

Figure 52: Busy supermarket

In this section, we will be exploring another example of an unsupervised learning
algorithm: market basket analysis. Market basket analysis deals with the
problem of analyzing the relationship between sets of items and how often they
appear in certain baskets.

To make this description more concrete, one common use case for market basket
analysis is literally storing items in shopping baskets! Here we are concerned
with studying customer’s purchasing patterns.

We are particularly interested in rules for associating the presence of certain
items in a basket with the appearance of another item. For example, it might
be useful for store managers to know that when customers buy chips and salsa,
they also tend to buy guacamole. This could inform how items are laid out in
a store or allow for more targeted item recommendations.

A Flurry of Terminology

Now, how do we properly formalize these intuitions? Owur study of market
basket analysis will require introducing quite a bit of new terminology. The
ideas themselves aren’t super complicated, but it might be a bit tricky to keep
all the new terms straight. Don’t worry! Just refer back to the definitions as
necessary.

To make our analysis concrete, let’s assume we are analyzing an admittedly
small sample of data from a grocery store, where we have 4 customers’ baskets,
containing the following items:

1) (cheese, pasta, carrots, potatoes, broccoli, chicken)
2) (chicken, pasta, tomatoes, carrots)

3) (chicken, broccoli, pasta, cheese)

4) (chocolate, water, carrots, sugar)

We define the support of an item (or a collection of items) to be the number of
baskets in which it appears. For example, the support of (chicken) is 3, since
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it appears in 3 baskets. Similarly, the support of (chicken,pasta) is 3. A high
support means an item or set of items appear in a large number of baskets.

We can specify a numerical support threshold, and define a frequent itemset
to be one whose support is equal to or greater than our support threshold.

This is important because we will want to do an analysis on itemsets that
actually appear in a reasonably large number of baskets, so that we can extract
meaningful insights. What good is an analysis around something like beets,
which probably only one customer bought all year? (Fine, I'm sure at least two
people bought beets).

Our goal will then be to extract those frequent itemsets in our baskets. To do
that, we define an association rule which is written as M — n. Here M is a
certain itemset, and n is a single item.

Therefore, an example of an association rule would be (chicken,pasta) —
(cheese). These rules allow us to compute some likelihood that the item n
is found in conjunction with those items in M.

To help quantify this notion, we also define the confidence of a rule as the
ratio of the support of (M,n) to the support of M.

So for our running example, the confidence of (chicken,pasta) — (cheese) is
%, since (chicken,pasta,cheese) appear in 2 baskets whereas (chicken,pasta)
appear in 3.

For some qualitative analysis of this metric, note that a particularly small confi-
dence (something close to 0) implies a very unlikely association rule. An example
of that would be (broccoli) — (chocolate). The highest confidence we could have
is 1, which would happen if item n appeared in every basket where M appeared.

We can make the relationship between M and n even more powerful from a
causal standpoint by introducing the concept of interest.

Interest is defined as the confidence of the association rule minus the frac-
tion of baskets in which n appears. In our running example, the interest of

(chicken,pasta) — (cheese) would be 2 — 1 = 1.

Notice that we want our interest to be as high as possible because that would
suggest that having (chicken, pasta) in your basket more directly implies you
will have (cheese) as well.

An interest of 0 would more closely suggest that every basket that has (cheese)
also happens to have (chicken, pasta), which is not as meaningful from a causal
standpoint.

Another interesting case is where we have a negative interest. A negative
interest implies that the presence of (chicken, pasta) discourages the presence
of (cheese).
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Putting It All Together

With all this terminology in place, we can now state that the core of useful
market basket analysis boils down to finding association rules that hold with
high confidence on itemsets with high support. Wow that’s a mouthful!

This leads us to the most sophisticated algorithm we will see in our studies:
counting! Jokes aside, it turns out that finding association rules that have our
desired properties effectively requires doing methodical counting of all possible
combinations of itemsets over the set of all baskets.

The devil is in the details, however. Often the complexity in market basket
analysis is not so much about any sophisticated math, as much as it is about
dealing with analysis at scale.

Think about how many customer baskets there are in an average grocery store.
It could be hundreds of thousands in a month, and a basket could contain
anywhere from a few to upwards of 50 items.

That means we have A LOT of data to process and store. Much of the al-
gorithmic complexity in market basket analysis comes in algorithms to do this
processing efficiently. We will defer discussion of these clever algorithms to
another time!

Final Thoughts

Before we finish this lesson, we will end with a few high-level notes about market
basket analysis. It turns out this analysis technique is extremely useful and can
be applied to a number of different problems.

One example includes doing large-scale processing of word documents where we
are trying to extract words that can be lumped into concepts. In this case, our
items are the words and the baskets are the documents. Think about what
kinds of association rules could be useful there.

Market basket analysis can also be applied to fraud detection where we can
analyze the spending patterns of users. Here users’ credit card purchases over
a given time period could be baskets, and the things they purchase could be
items.

There are many other uses, and the most amazing thing is that we are deriving
very meaningful analyses completely in an unsupervised setting. No ground
truth but still a lot of useful deductions. Neat!

Test Your Knowledge
Frequent Itemset Example
Confidence Example

Support Example
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Association Rule Example
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What K-Means

Figure 53: Source WhatMatrix

In this section, we are going to continue our study of unsupervised learning by
taking our first look at data clustering. To do so, we will describe k-means
clustering, which is one of the most popular clustering algorithms used by
practitioners.

At a high-level, k-means clustering seeks to find a way to clump our dataset
into some predefined number of clusters using a well-defined notion of similarity
among the datapoints. In this case, the notion of similarity usually amounts
to minimizing intra-cluster variation of the points across all the clusters. Let’s
investigate what this means in further detail.

The Algorithm

Let’s say that we have n datapoints in our dataset: (X3, Xa,...,X,,). Here we
assume that each of the datapoints is already featurized and represented in its
mathematical vector notation.

We begin by selecting some number, k, of what are called cluster centroids.
Let’s denote these centroids (Cy, Cy, ..., C)). Note that the centroids must have
the same dimension as the points in our dataset. In other words, if each of our
datapoints is a vector of dimension 5, then our centroid will also be a vector of
dimension 5.
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The k-means algorithm then runs the following steps repeatedly:

1) For every datapoint, find the centroid to which it is closest, according to
a BEuclidean distance metric.

2) Once we have assigned each datapoint to a centroid we recompute each
centroid C; by averaging the datapoints that have been assigned to C;.

Let’s give a bit more detail about these steps. For 1) if we start with X, we
compute:

(LQ(Xl,Cj))2 for every Cj in (01,02, ...,Ck)

Here Lo(X7, C;) denotes the Euclidean (also known as Ls) distance we described
in the lesson on regularization. After performing this calculation, we assign
X1 to the C; which produced the minimum value for this squared Euclidean
distance. We repeat that procedure for every single datapoint.

The calculation in step 2) has the effect of adjusting the centroid to more accu-
rately reflect its constituent datapoints. In this way, the two steps constantly
switch between assigning points to centroids and then adjusting the centroids.

That’s all there is to it! We repeat these two steps until our algorithm converges.
What does convergence mean here?

Convergence occurs when no datapoints get assigned to a new cluster during an
execution of 1). In other words, the centroids have stabilized.

Below we include a visualization of the algorithm executing for some number
of iterations on a dataset. Let’s say we have some data and we are trying to
cluster it into three clusters.

We start with all our points unassigned to any centroids. The centroids are
indicated in red, blue, green in Figure 54.

Now we assign the points to their nearest centroid (Figure 55).
We then adjust the centroids accordingly (Figure 56)

We then repeat these steps until our centroids stabilize, at which point we are
done. We should see three well-defined clusters as in Figure 57.

K-means clustering is elegant because one can demonstrate mathematically that
the algorithm is guaranteed to converge! Now you may be thinking that some-
thing seems missing.

We seem to have avoided one huge detail: how do we actually pick the initial
cluster centroids for the algorithm? In particular, though k-means is guaranteed
to converge, how do we know it is converging to the absolute optimal clustering?

The short answer is we don’t. It turns out that centroid selection can pretty
drastically impact the clustering produced by the algorithm. One example of a
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Figure 54: Unclustered data

Figure 55: Nearest centroid assignment
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valid centroid selection algorithm that is used in practice is just to pick random
centroids. Another one is to pick k points in our dataset that are spread far
away from each other.

Because different centroid selection can impact the clustering, it is common to
run k-means several times on a dataset using different selected centroids and
picking the best clustering among them.

Final Thoughts

While k-means is not super complicated, it is a very useful method for unsuper-
vised learning. As one simple use case, imagine we were given a collection of
unidentified essays.

We could represent each document as a vector, based on the frequency of words
appearing in the essay. We could then apply k-means clustering to find which
essays are most similar, and those could perhaps give us some indication of how
many authors’ writing is represented in the collection.

Perhaps we could even extract the centroids and compare them to essays whose
authors we know and that could help us actually identify the unknown essays
in our dataset!

This is just a small example of how useful k-means can be in practice. There
are many more scenarios where it can be extremely useful for analyzing datasets
where we don’t have labels.

Test Your Knowledge

K-means vs. KNN

Centroid Initialization
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Principal Components Analysis

PCA IS COMING

mabgarrame org

Figure 58: PCA meme

This section will introduce us to principal components analysis, which is
going to be our first example of a data dimensionality reduction technique.
While that might sound really fancy, at its core dimensionality reduction is a
fairly intuitive idea.

Motivations

To motivate it, let’s imagine we have a featurized dataset consisting of the
points (X1, Xa,..., X,,). So far in past sections, we have never spent too much
time talking about the dimensionality of our datapoints, or in other words, the
number of features per datapoint. We have largely imagined that our data
consisted of a handful of manually-chosen features, maybe on the order of 5-20
or So.

But for many problems, our feature sets span upwards of thousands of features!
As an example, consider a problem where we are analyzing some collection of
text documents.

For such a problem, it is perfectly reasonable to featurize each document by the
number of occurrences of each unique word. In other words, if the appears 3
times in the document and cat appears 5 times, we would have two separate
features with values 3 and 5 respectively. Notice how in this case, our feature
set could conceivably be equal in size to the number of words in the English
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dictionary, which is over 100,000 words!

Once we are dealing with high-dimensional data, we face a number of new
challenges related to the computational cost of training a model or memory
costs related to storing data on disk. Another question that naturally comes up
is: do we have any redundancy in our features?

We derive features from data because we believe that those features contain
information that will be useful for learning the outputs of our models. But
if we have multiple features that encode similar information, then those extra
features don’t help us learn a better model and may in fact just incur additional
noise.

As an example, imagine that we are training a model to determine whether a
given car is cheap or expensive, and we have one feature that is the size of the
trunk in cubic feet and another feature that is the number of shopping bags
that can fit in the trunk.

While these features aren’t exactly the same, they are still very related and it
certainly seems like we wouldn’t have a less powerful model if we removed one
of these features.

Welcoming PCA

Dimensionality reduction is a technique by which we seek to reduce each data-
point to a smaller feature set, where we preserve the information in each dat-
apoint. For a little more visual intuition about what dimensionality reduction
could look like, imagine a dataset with two primary features (and their associ-
ated axes) that looks as shown in Figure 59.

Notice how in this example, it seems that we really only need a single axis
(rather than two) to represent our entire dataset, namely Z; as in Figure 60.

This means that we could project each datapoint on this new axis Z;. Notice
how except for a little bit of wiggle along the Z5 direction that we don’t capture,
our dataset could be represented in terms of this new single pseudofeature. Now
the big qustion is: how do we pick this Z; axis to use for representing our
dataset?

And here we finally get to principal components analysis (or PCA for short).
PCA is an algorithm whereby we find these axes along which the feature of a
dataset can be more concisely represented. These axes are called the principal
components.

How does the algorithm find these principal components?

Well, in order to gain some intuition for the algorithm, let’s revisit our running
example of the dataset above. While we deduced that Z; above was a good axis
along which to project our data so as to reduce the dimensionality, imagine if
we had picked Z5 instead.
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Figure 59: Sample dataset

It certainly feels like this is an inferior, fairly non-representative, axis along
which to reduce our dataset. So what makes our original Z; a better axis than
this alternate Z57

The PCA algorithm claims that we want to project our data onto an axis where
the variance of the datapoints is maximized. The variance of a dataset
roughly measures how far each point is from the dataset mean. Notice how the
variance of our data projected onto Z; certainly is larger than that of the data
projected onto Zs.

In the second case, much of the data coalesces to a few very close points, which
seems like this dimensionality reduction is making us lose some information.

Now that we know that PCA seeks to find the axis that maximizes the variance
of our projected data, we’re going to drop a bit of math to formalize this notion.

For the 1-dimensional case, imagine that we have a dataset (X1, Xo,...,X,).
Maximizing the variance of the data is equivalent to finding the unit-vector, v,
that maximizes:
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Figure 60: Axes fit on dataset
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Finding this v can be done pretty efficiently using some linear algebra properties
that we won’t go into for now. Once we are done, this v is our first principal
component!

The second principal component would be the axis that maximizes the variance
on the data after we have removed the influence of the first principal component.
If we extracted k principal components, these components would define a k-
dimensional subspace that maximizes the variance of our data.

Final Thoughts

In practice, when we are reducing our dataset we will choose some reasonable
number of principal components to extract. In this way we could take each
datapoint consisting of maybe 1000 features and represent it as a compressed
vector of maybe 20 values (if we chose to extract 20 principal components). That
is pretty awesome!

Because of this, PCA is often a go-to technique for data preprocessing before
any model training is done. Alternatively PCA can be used to visualize very
high-dimensional data by projecting it into maybe 2 or 3 dimensions, to gain
some insights into what the data represents.

One last practical note regarding PCA is that it is common to normalize the
dataset before running the algorithm, by subtracting out the dataset mean and
also ensuring that the features are using the same units (you don’t want to have
a feature that is a distance in meters and one in feet). After that normalization
is done, we can run the PCA algorithm as described above.

Test Your Knowledge
PCA Definition

PCA Preprocessing

Best Axis

PCA Advantages
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Deep Dive Into Neural Networks

’
-

THAT'S NOT ENOUGH
£ |

WE HAVE TO GO DEEPER

Figure 61: Neural network meme

In this section, we will take our first deep dive into deep learning. Because deep
learning is primarily the study of neural networks, we will spend the next few
sections exploring the ins-and-outs of various classes of neural network models
that each have different architectures and use-cases.

In this section, we will be studying the most vanilla flavor of neural networks:
feedforward neural networks. Consider Figure 62, showing the process of
running an image through some neural network-based classifier to determine it’s
an image of a dog:

Figure 62: Basic neural network

The network in the middle is the main engine doing our classifying, and it turns
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out this is our first example of a feedforward neural network. So what’s going
on here? Let’s dive in and see!

Building Up the Network

Let’s zoom in on just the model, shown in Figure 63:

O O\
O—0O
O o

Figure 63: Neural network close-up

Figure 64 shows each component of this feedforward network labelled:

It turns out this network is performing certain layer-based computations. To
understand what each layer is doing, we must first begin at the start of the
model computation, which is where we provide the input data.

Recall that we can represent each point in a dataset through some featurized
representation, and this is typically where we start when providing the point to
a machine learning model. The exact features we extract often depend on the
problem domain.

In the case of image classification, a common representation of an image is as a
3-d matrix (also known as a tensor) of red/green/blue pixel values.

Therefore if our image is 100x100 pixels, each pixel would consist of 3 values,
one representing the strength of each of the red, green, and blue color channels.
Our image represented as a 100x100x3 grid of values is shown in Figure 65:

We can further collapse this 3-d representation into a single vector of 100-100-3 =
30,000 values. We do this merely for convenience, without modifying any of the
underlying information. This is shown in Figure 66.

For the sake of our example, rather than operating on a 100, 000-d vector, imag-
ine that we use a smaller representation of the picture consisting of a 3-d vector:
V =(1,0.4,2). Here we have picked these values arbitrarily.

Now let’s take a 3-d weight vector W = (—1,0.2,1) and compute the sum
Wy - Vi+Wy - Vo4+W3-V3=—-1-14+02-04+1-2=1.08.
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Figure 65: Image pixel value representation
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Figure 66: Collapsed image vector representation

Now let’s further feed that sum through a sigmoid function (shown in Figure
67).

f(1.08) = 1+6—11-1.08 ~ 0.75

Figure 67: Feeding through sigmoid function

We then set that result as the value of the circle in the first layer (Figure 68).

This result is our first example of a neuron in the neural network terminology.
Because the term neuron is a gross abuse of the biological term (and we don’t
want to annoy any of our neuroscience friends), let’s just call it a compute
unit for our purposes.

Now let’s use a new weight vector Wy = (3,0.3,—0.1) and perform the same
computation with our feature vector, namely taking a linear sum and feeding it
through a sigmoid function. If we repeat this computation with the new weight
vector, we should get the result 0.81, which becomes the value of the second
compute unit in our new layer (Figure 69).

We can repeat this computation for as many compute units as we want. The
important thing is to use a different weight vector for each compute unit.

Let’s say we repeat this computation for 3 units in total with some weight
vectors getting the following values (Figure 70).

Congratulations! These computed values form the first layer of our neural net-
work! These intermediate layers of a neural network after the layer where the
inputs are fed in are called hidden layers.

83



Figure 68: First unit neural network

Figure 69: Second unit neural network
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Figure 70: Third unit neural network diagram

This particular layer of computations also has a special name: a fully con-
nected layer. Again we can have as many compute units as we want in the
layer, and that number is something we can tune so as to maximize performance.

In addition, the sigmoid function we chose to run our linear sum through has
a special name in the neural network community: an activation function. It
turns out we can easily choose different activation functions to feed our linear
sum through. We will explore a few commonly used variants in the next section.

One last note: we didn’t really mention how we chose the values of our weight
vectors. This seems like an important detail to mention because the weights
determine how certain features get upweighted (or downweighted) at a given
compute unit. The truth is we picked them randomly, and this is basically what
is done in practice (with a few caveats which we will discuss later).

Now that we have this vector of 3 compute units at the first layer of our network,
why not repeat the same set of operations as before?

So that’s what we do. We pick new weights per compute unit, take a linear
sum with the vector of values from the first layer, and run the result through a
sigmoid function. This gives us Figure 71.

Nice! This is the second layer of our network! Let’s assume that we are doing a
3-way classification task where we are trying to predict whether an image is of
a cat, a dog, or neither.

Therefore we want to end up with three values that give us the probability for
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Figure 71: Second layer neural network

the values cat, dog, and neither. Let’s run our second layer through another
similar set of computations. This will give us a distribution over three values
as shown in Figure 72

This set of computations through the layers of our network is called the forward
pass. Now we finally see why these are called feedforward networks: we are
feeding values forward through the network.

One important note on hidden layers and compute units per layer of a neural
network. In general, the number of layers and the number of units are both hy-
perparameters that we can adjust as necessary to achieve the best generalization
error in our network.

Backpropagating Errors

These computations are all nice and good if our network predicts the right value
for a given input. However, it seems pretty unlikely that if our weights were
randomly chosen that our model would know to predict the right value.

So what’s missing? It turns out our feedforward pass is only half the story. We
have said nothing about how to actually train the model using our data. Let’s
assume that during our forward pass our neural network made a mistake and
instead predicted a cat (Figure 73)

It turns out that though our network made a mistake, we can still compute a
cost for the values that our network computed. Intuitively it seems that if our
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Figure 72: Third layer neural network

Figure 73: Neural network incorrect classification
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network predicted (0.35,0.45,0.2) for (dog, cat, neither) that is less wrong
than if it had predicted (0.1,0.8,0.1).

So we can formally associate a value for this level of wrongness using a cost
function, similar to what we did previously with models such as linear regression.
We will discuss some details about the possible cost functions we can use for
different tasks in later sections.

For now let’s assume the cost calculated is 5. Neural networks as we have defined
have a special property called differentiability, which means we can compute
derivatives of the cost function with respect to all the weights. Woah, that was
a mouthful.

We won’t go into the nitty-gritty details, but let’s take the weights of the the first
compute unit of the final layer (of the neural network in our running example).
We can compute gradients indicating how much we should update these weights
to get closer to predicting the right value (thereby lowering the value of the cost
function).

In Figure 14, we see the gradient of the first unit with respect to the weights in
the preceding layer flow backwards. This is indicated by the red arrows (Figure
74).

Figure 74: Back flow neural network gradient

Once we have these gradients, we update the weights as necessary. Notice how
here the end result is being used to send information backward in the network.
This backward flow of signal is called backpropagation.

It turns out we can compute these gradients for all the weights in a given layer.
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Once we have computed the gradients and updated the weights in the last layer,
we compute the derivatives and update the weights in the second layer.

We can continue this all the way to the first layer. These backpropagation
updates are done using gradient descent. In practice, we update all the weights
in the entire network for some number of iterations until our cost function
decreases as much as we would like.

Final Thoughts

This concludes our (hopefully) gentle introduction to feedforward neural net-
works. While they may be the most vanilla networks, in practice feedforward
networks can be successfully applied on many regression and classification tasks.
Though we used the example of image classification, we can apply feedforward
networks to many other problem domains.

In general, the compute units in neural network hidden layers learn many pow-
erful representations of the data during training. In the next lessons we will be
building out some of the details of neural network theory.

Test Your Knowledge
Matrix Practice I

Matrix Practice I1
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Neural Network Grab Bag
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Figure 75: Neural network meme

In a previous section, we went through a motivating example of a feedforward
neural network from start to finish. We introduced a lot of neural network
concepts but also left out a lot of details related to activation functions, weight
setting, and other aspects of neural network theory. In this section, we will
make a grab bag of all the points we missed. Let’s get started!

The Universal Approximator

Though we have introduced the neural network, we haven’t really developed a
sense for what makes these networks so great.

For starters, neural networks are a ridiculously powerful model class that can
represent a diverse collection of functions. It has been mathematically shown
that neural networks that have at least one layer are universal approxima-
tors.

What this means is that a neural network with at least a single layer and some
nonlinear activation function can approximate any continuous function. That
result is insane! You could literally draw any random function off the top of
your head and a single-layer neural network could learn a representation of that
function.

There’s a big caveat, however. This is a theoretical result which means that
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while a 1-layer network could learn any function, whether you are able to get it
to do that in practice is a separate question. It turns out that it’s quite hard
to get a neural network to learn any function.

Our ability to do that is predicated on a number of other factors, including
whether or not we can get our cost function to converge and all of the additional
considerations that we will discuss below. But the fact that literally the simplest
neural network can do so much is already an impressive property of this model
class.

Weight Initialization

In our last section, we mentioned that at the beginning of neural training we
initialized the weights of our model randomly. The truth is that is literally how
the weights of our model are initialized (with a few bells and whistles).

An important point to understand is that we absolutely need the weights to
be different for separate compute units of a given layer. If they were not, we
would have identical compute units for a given layer, which would be like having
a redundant feature. Randomizing the weights allows us to get the necessary
variety in the weights we need.

Because neural networks are so powerful, they are also very susceptible to over-
fitting, so we want to jitter them a bit during learning. Random weight ini-
tialization helps us achieve this. Therefore in practice we often initialize each
parameter to a random value within some small range like (—1,1).

Activation Functions

Recall that when we introduced our first neural network, an activation function
was the function we applied to a value after computing the linear sum of a set
of a weights with a certain layer.

In particular, we used a sigmoid activation function to transform the linear sum
of each compute unit. We had previously encountered a sigmoid in our study
of logistic regression. As a reminder, let’s recall the form of a sigmoid shown in
Figure 76.

It turns out that we can use other functions for our neural network activation
function, and some are actually preferred! The only really important thing is
that we use some function that performs a nonlinear transform on its input.

The way to see why this is important is imagine we had a 2-layer neural network
that only applied a linear function between layers. In that case, we could write
the full network computation as Linears(Lineari(X)) = Linear(X). This
means applying a sequence of linear functions is equivalent to applying a single
aggregated linear function. This would make it so that our network could only
learn linear functions!
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Figure 76: Sigmoid activation

In practice, sigmoids are not the go-to activation function to use because their
outputs are not zero-centered and their gradients quickly drop to 0 for very
large and very small values. This makes them very finicky to use during network
training.

Two other common activation functions used in neural networks are the tanh
and the rectified linear (ReLu) unit. The tanh function is shown in Figure
7T

Tanh looks very similar to the sigmoid except it is zero-centered. The ReLu
activation is shown in Figure 78:

The ReLu is a nice well-behaved function that is easy to compute and allows
for efficient training of networks. In general, both the ReLu and tanh are used
in place of the sigmoid because they result in superior training of networks.

Regularization

Like any other supervised learning model, neural networks can be vulnerable
to overfitting. In fact, because they are so powerful, they can be even more
vulnerable than other model families.

It turns out that we can use many of the same regularization techniques we
introduced previously to offset these effects. For example, we can modify the cost
function we are optimizing during training by adding an L; or Ly regularization
term.

However, there is one neural network-specific regularization technique called
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Figure 78: Relu activation
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dropout. The idea behind dropout is relatively straightforward, so much so,
that it’s astounding how well it works in practice.

The basic idea behind dropout is that during the forward pass of our neural
network, going from one layer to the next, we will randomly inactivate some
number of units in the next layer. To make this concrete, assume we had the
neural network in Figure 79.

Figure 79: Neural network

In Figure 80, we see the result of applying dropout to the second layer of the
neural network.

While in the diagram, it looks like all we’ve removed is some arrows to the
compute units, this has the effect of actually zeroing out those compute units.

This is because we have essentially removed all the weights from the preceding
input compute units to the output ones we are dropping. When we apply
dropout, we drop each compute unit with some probability we choose, typically
somewhere between 0.1 — 0.5. This probability is a hyperparameter we can
tune during training. Furthermore, we can apply dropout to hidden layers of a
network as well as input layers.

Dropout has the effect of breaking symmetry during the training process by
preventing the neural network from getting caught in local minima. It turns
out this is an important effect because during training networks can get stuck
in local optima, missing out on superior solutions.

Dropout is a bit of a strange idea because we are effectively forcing the network
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Figure 80: Neural network with dropout applied

to forget a bit of what it knows during training. It’s like saying “Hey neural
network you’re getting a little too comfortable with this one feature. Forget
about it for a bit” Note, here we are referring to compute units as features
because they effectively function as features.

When we are done training a network and ready to feed new inputs through
our model, we will not drop any units from our network. Instead, we will scale
output unit values by the dropout probability. This ensures that at test time,
our units have the same expected value as they had during training.

Strange though it may be, in practice dropout is arguably the most effective
regularization technique used for neural networks.

The Power of Layers and Units

From the get-go, there are at least two degrees of freedom in determining the
underlying architecture of a feedforward network: the number of hidden layers
and the number of units per layer.

As we increase the number of layers in a neural network, we increase its repre-
sentational power. The same is true for the number of compute units per layer.
It turns out we can make our networks arbitrarily powerful by just bumping up
its number of layers and compute units per layer.

However there is a downside to this that we must be aware of. The increase in
power is offset by an increase in computational cost (i.e. it is more expensive
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to train a model) as well as the fact that the models must be regularized more
aggressively to prevent overfitting.

Loss Functions

In the past we have used the term cost function to refer to the mathematical
function we are trying to optimize during training of a model. Here we will use
the term loss function as it is more common in neural network descriptions,
though recognize that we are treating the two terms as equivalent.

When we introduced our feedforward model, we were quite ambiguous about
the details of the loss function we were using backpropagated during training.
To make things concrete, we will discuss one commonly used loss function for
classification: the cross-entropy loss.

Assume that we are outputting one of three labels [1,2,3] for a dataset
[(X1,Y1), ..., (Xpn, Yn)], then our loss function takes the following form:

n 3

— Z Z Ij,c IOg(PLC)

j=1lc=1

Note that here P; . refers to the probability of our model outputting label ¢ for
the datapoint j. In addition, ;. is an indicator variable which is equal to 1 if
datapoint j has a true label of ¢. For example, this means that if Y3 has a label
of 2, then I3 5 is 1 while I3, and I3 3 are 0.

Neural networks can also be used for regression, and in those cases we can use
a least squares loss as we did for linear regression.

Other Training Tidbits

There are a few other tidbits of neural network training that are worth men-
tioning. First off, when we are training a network with a given loss function it
is crucial to ensure our gradient calculations are correct for backpropagation.

Because our gradients determine how much we should update certain weights so
as to decrease our network’s loss, if our computed gradients are off, our network
training could be either subpar or completely wrong! Our network loss function
may mistakenly never converge, so we really have to double check our math
with these gradients.

In practice, today most libraries used for building neural networks such as Ten-
sorflow, PyTorch, etc. perform automatic differentiation. This means that
you don’t actually have to mathematically derive gradients. Instead you just
define your loss function and your model architecture and the libraries perform
all the gradient updates during backpropagation implicitly. Super neat!
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On a related note, neural network convergence during training is tricky to get
right sometimes. Even if we don’t make any errors in our gradients, networks
have a tendency to get stuck in local optima during training. Because neural
network training is a nonconvex optimization problem, we are never sure that
we have achieved the absolute global optimum for a problem.

It may also take really long for a network to converge to any sort of an optimum.
Neural network training for certain types of problems can take upwards of several
weeks! Getting networks to train appropriately often requires us to tune various
hyperparameters such as dropout probabilities, the number of layers, the number
of units per layer, and other related factors.

Finally, it is worth commenting about different gradient descent techniques.
When training neural networks and other machine learning models, two common
gradient descent techniques we can use include batch gradient descent and
stochastic gradient descent.

In batch descent, during an iteration of training we compute an aggregated
gradient for a collection of datapoints that we use to update the weights. Batch
descent generally leads to quite stable updates for each iteration of training,
though each iteration takes a bit longer since we have to compute gradients for
a collection of points.

By contrast, with stochastic descent we only perform weight updates with the
gradient computed for a single datapoint at a time. Stochastic descent leads
to a much more jittery descent during training, though each update is very fast
since it only involves one point.

Final Thoughts

Phew! That was a lot of information spread across a wide variety of topics. At
the end of the day, it is important to recognize that neural networks require
quite a bit of details to get right and use effectively on new problems.

Sometimes building neural network models is more an art than a science. That
being said, there do exist some systematic ways to build better models, many
of which we have touched on in this section, so make sure to keep them in your
machine learning toolkit!

Test Your Knowledge
Activation Practice 1
Activation Practice I1
Activation Practice 111
Weight Initialization

Batch vs. Stochastic
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Dance Dance Convolution

Figure 81: Convnets meme

About 9 years ago, the ImageNet challenge, an annual visual recognition com-
petition was begun. In the challenge, teams were tasked with building the best
object classifier on a collection of images from a set of 1000 possible object labels.

In the year 2011, a team from the University of Toronto trounced the competi-
tion by introducing the world’s first successful image recognition system built
entirely using neural networks.

This milestone helped to trigger the artificial intelligence wave that we are cur-
rently experiencing. Today we are going to investigate the neural network ar-
chitecture that was at the heart of this revolutionary point in history. Excited?
Let’s get to it!

Motivations

The neural network class that was at the heart of the deep learning revolution
is called convolutional neural networks. To motivate their design, we will
start with the problem of image recognition. Consider the image of a dog in
Figure 82.

Our brains are amazing because we are able to just about instantaneously rec-
ognize that this image contains a cute puppy. What allows us to recognize that
this is a puppy?

Our brains are keen at picking up relevant features in an image, scanning effi-
ciently for the things that are necessary for us to differentiate the image. Con-
sider a more complicated example shown in Figure 83.

99


http://www.image-net.org/challenges/LSVRC/

Figure 83: Jackson Pollack
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Here it’s not immediately clear what this is a picture of, so we must analyze
the picture more deliberately. We may start at the upper left corner and scan
horizontally, picking out details that seem relevant.

After we have scanned the entire image, our brain holistically tries to put to-
gether the pieces into some impression of the image subject. This intuition for
how our own vision system seems to work by scanning and picking out features
will be a useful analogy for convolutional networks.

The Convolutional Layer

Let’s revisit how we represent images mathematically. Recall that images can be
represented as a 3-d tensor of (red, green, blue) color channels. Previously when
we were studying feedforward networks we collapsed this 3-d representation into
a single dimensional vector. It turns out in practice this vector collapsing is not
really done for images.

Instead imagine that we have some 4z4x3 image and we keep it in its
3-dimensional format. We will aim to process our image by running it through
a series of layerwise computations, similarly to how we did for feedforward
networks. To do that we will take a 22223 tensor of weights, which we will call
a filter (Figure 84):

Input Image

121| 78 | 89 | 31 Filter
17 45|46 | 72
4 /90| 37|101
84 | 23210/ 26 S

-3 121
0.3/-0.2

Figure 84: Convolutional network filter

Let’s begin by applying our filter to the upper left 222x3 corner of the image.
The way this is done is we chop up our filter into 3 222 depth slices (Figure 85)

101



-3 2.1
0.3]-0.2

321 J [0
0.7 1.2

[03]-0.2

2.40.3

-0.80.9

Figure 85: Convolutional neural network deconstructed into filters

We do the same for the corner of the image we are interested in looking (Figure
86).

Then we take the pairs of (depth-wise) matching slices and perform an element-
wise multiplication. At the end, we take the 3 values we get from these depth-
wise operations and we sum them together (Figure 87).

For those that are mathematically-inclined, we just took a 3-d dot product!
This computed value will be the first element in the next layer of our neural
network. Now, we slide our filter to the right to the next 2x2z3 volume of the
image and perform the same operation (Figure 88).

Note that we also could slide our filter over one pixel, rather than two as we
have done. The exact number of pixels that we slide over is a hyperparameter
we can choose. After this, we move our filter to the lower-left corner of the
image (Figure 89).

and compute the same operation. We then do the same operation again, after
sliding our filter horizontally. At the end, we have four values in this first slice
of our next layer (Figure 90).

Exciting! This is our first example of a convolution! The results of applying
this filter form one slice of this next layer in our network.
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Figure 86: Convolutional neural network deconstructed corner
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Figure 87: Convolutional neural network filter multiplied
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Figure 88: Top right filter multiplication in convolutional neural network
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Figure 89: Lower left filter multiplication in convolutional neural network
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Figure 90: First filter multiplication in convolutional neural network
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It turns out we can use another filter with new weights on this same image to
get another slice in the next layer (Figure 91).

Second slice of layer 2

|

121/ 78 | 89| 31
17]45/46|72| | |1 [81 60 [17.0
49037101 (([2:3]-3:2 49 | 814
84| 23(210| 26

Figure 91: Second filter multiplication in convolutional neural network

In theory we can use as many unique filters as we want in our convolution,
though the number to use becomes a hyperparameter we can tune.

When we are done applying filters, the output of these filter operations are
stacked together to get our complete next layer. If we had used 10 filters in the
first layer of our running example, our second layer would be a 222210 tensor
of values. This transformation from input to output using filter convolutions is
appropriately called a convolutional layer.

Note that once we have our second layer, we can start from scratch and apply
another convolutional layer if we so choose. Notice also that as we apply our
convolutions, the length and width dimensions of our tensors tend to get smaller.

The depth of our output layer is equal to the number of filters we use for our
transformation, so depending on that number, we might also reduce the depth
dimension. For this reason, convolutional layers can be viewed as a form of
feature reduction.

One of the most elegant things about the convolution layer is that it has a
very natural analogy to how humans compose their understanding of complex
images.

When we see something like a puppy our visual understanding process may first
pick out prominent points like eyes and the nose. It may then create a notion
of edges that form the outline of the dog. We then may add textures to the
outline and colors. This hierarchical process allows us to decompose images into
smaller constituents that we use to build up our understanding.

In a similar fashion, convolutional networks can also learn hierarchical features
as we go up the layers. Certain works have demonstrated that when you actually
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visualize what is being learned at the layers of a convolutional network, we see
visual entities of increasing complexity (points, lines, edges, etc.) as we go
deeper into the network. This is really cool!

In addition to this nice intuitive design and interpretability, what else do we
gain by using convolutions instead of our original feedforward fully connected
layers? When we use convolutional layers, we also see a drastic reduction in the
number of weights we need in a given layer.

Imagine if we collapsed a reasonably-sized image of dimensions 100x100z3 into
a 30,000-length vector. If we wanted to make a fully-connected layer, each
compute unit in the first layer would be connected to every value in the input,
creating 30,000 weights. If we had even a moderately-sized first layer of 100
units, we would have 30,000 - 100 = 3,000,0000 parameters just in the first
layer! This clearly is not scalable.

On the other hand, if we didn’t collapse the image and used a 5x5 filter for
a convolution, we would have 5 -5 -3 = 75 weights per filter. Even if we
used a relatively large number of filters like 200, we would have a total of
200 - 75 = 15,000 weights in the first layer which is a huge reduction! In this
way, convolutional layers are more memory-efficient and compute-efficient when
it comes to dealing with images.

Convolutional Network Mechanics

There are a number of design decisions in the convolutional layer that we can
play with that influence the network’s learning ability. For starters, we can
certainly say a bit more about the dimensions of the filters applied.

In practice, we can see filter sizes anywhere from 1zl to upwards of 11x11 in
some research papers. Note also that when applying a 1z1 filter, we wouldn’t
actually reduce the length and width dimensions of the layer we are convolving.

In addition, there’s another design factor that we’ve used without formally defin-
ing. When we were sweeping our filter across the image in our motivating ex-
ample, we were moving the filter over two pixels in a given dimension at a time
(Figure 92).

However, what if we had shifted over our filter by one pixel instead? Notice that
this would determine a different subset of the image that the second feature
would focus on (Figure 93).

The value that determines how much we slide over our filter is called the stride.
In practice, we often see that using smaller stride values produce better perfor-
mance on trained convolutional networks.
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Figure 92: Convolutional neural network stride 2
Dist = 1 pixel
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Figure 93: Convolutional neural network stride 1
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Pooling Layers

In addition to convolutional layers, there is another commonly used layer in
convolutional networks: the pooling layer. The purpose of pooling layers is
often to more aggressively reduce the size of a given input layer, by effectively
cutting down on the number of features.

One of the most common types of pooling is called max pooling. As its names
suggests, the max pooling layer takes the max value over an area of an input
layer (Figure 94).

121| 78 | 89 | 31
17 | 45|46 | 72
4 90|37 (101
84 | 23 |210| 26

— MAXPOOL = 89

Figure 94: Convolutional neural network max pool

With pooling layers we also extend the operation depth-wise and apply it over a
variably-sized area, as we did with convolutional filters. For example, we could
use max pooling over a 2z2 area that determines the segment we are applying
the operation to. The depth of the output volume does not change.

Zooming out, we must be careful when choosing the filter and stride size in our
convolutional networks and operations such as max-pooling tend to throw away
a lot of information in an input layer.

The 2011 ImageNet Winner

With all that theory in place, we are now finally ready to revisit the 2011
ImageNet-winning entry. Historically, a lot of the architectures that have won
past ImageNet competitions have been given catchy names because gloating
rights are a thing in machine learning !

The architecture that won ImageNet 2011 was called AlexNet after its principal
creator Alex Krizhevsky (Figure 95).
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Figure 95: AlexNet convolutional neural network architecture
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Here norm refers to a specific normalization operation that was introduced to
help generalization. This particular operation has fallen out of favor in convo-
lutional network architectures since then.

In addition, fully connected refers to a feedforward layer we saw when we
looked at feedforward neural networks. At the end of the last fully connected
layer, the architecture outputted a probability distribution over 1000 labels,
which is how many labels there were in the challenge.

An important thing to note is many of the ideas behind the architecture of
AlexNet had been introduced previously. What AlexNet added that was so
revolutionary was increasing the depth of the neural network in terms of number
of layers.

Typically as networks get more deep they get harder to train, but the University
of Toronto team managed to effectively train a very deep network. Another novel
contribution was the use of several stacked convolutional layers in a row, which
had not been explored previously.

And with that, we’ve come full circle! From humble beginnings, we’ve success-
fully discussed the model that triggered the modern-day resurgence of artificial
intelligence. What a phenomenal milestone in our Al journey!

Test Your Knowledge
Convolutional Application

Convolutional Layer Advantages
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Recurrent Neural Networks
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Figure 96: Source Chelsea

In this section, we continue our study of deep learning by introducing an ex-
citing new family of neural networks called recurrent networks. Just as
convolutional networks are the de facto architecture for any vision-related task,
recurrent networks were once the standard for language-related problems.

In fact, for a long time there was a belief among natural language researchers
that recurrent networks could achieve state-of-the-art results on just about any
natural language problem. That is a tall order to fill for a single model class!

That being said, today on many natural language tasks, recurrent networks
are still incredibly performant. So what’s the big deal behind these recurrent
networks? Let’s take a look.

Motivations

Recurrent networks succeed in many natural language tasks because understand-
ing natural language requires having some notion of memory, particularly mem-
ory related to modelling sequences.

For example, if I gave you the sentence “I picked up the remote controller
on the couch and turned on the...,” and asked you to fill in the missing
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word, you would probably have no problem filling in a word like “television.”

In order to do that, you had to process all the given words in sequence, asso-
ciate the action of “picking up” to the “controller”, interpret the situational
context of a controller on a “couch”, and use that to inform what item could
be “turned on” given this context. This level of processing is an absolutely
amagzing feat of the human mind!

Having a powerful sequential memory is essential here. Imagine if you were
reading the sentence and by the time you got to the end, you had forgotten the
beginning and all you remembered was “turned on the”.

It would be MUCH harder to fill in the right word with just that phrase. It
seems like “toaster”, “lawn mower”, and “drill” could all be valid responses
given only the phrase “turned on the.” The full context informs and narrows
the space of reasonable answers.

It turns out that neither feedforward neural networks nor convolutional networks
are particularly good at representing sequential memory. Their architectures
are not inherently designed to have sequential context intelligently inform their
outputs. But let’s say we wanted to build an architecture with that capability.
What would such an architecture even look like?

The Recurrent Unit

Let’s try to design an appropriate architecture. Imagine that we are feeding an
input, X7, into some neural network unit, which we will leave as a black box for
now. That unit will do some type of computation (similar to our feedforward
or convolution layers from our previous sections) and produce an output value
O, (Figure 97).

To make this even more concrete, our input could be the start of our phrase
from above, namely the word “I”; and the output (we hope) would be “picked”
(Figure 98).

Now that we have output “picked”, we would like to have that output inform
the next step of computation of our network. This is analogous to when we
are processing a sentence, our minds decide what word best follows from the
previous words we’ve seen.

So we will feed in “picked” as the input of the next step. But that’s not
sufficient. When we process the word “picked” and are deciding what comes
next, we also use the fact that the previous two words were “I picked.”

We are incorporating the full history of previous words. In an analogous fashion,
we will use the computation generated by our black box in the first step to also
inform the next step of computation.

This is done by integrating what is called a hidden state from the first compute
unit into the second one (in addition to the token “picked”). This is shown in
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Figure 99.
We can repeat this procedure for the third step of computation (Figure 100).

In fact, we can do the same process all the way to the end of the phrase, until
our model outputs the desired word “television.” This is shown in Figure 101.

Notice that we are using the same black box unit for the computations of all
the timesteps. And with that we have constructed the hallmark architecture of
a recurrent network!

A recurrent network is said to unroll a computation for a certain number of
timesteps, as we did for each word of the input phrase. The same compute unit
is being used on all computations, and the most important detail is that the
computation at a particular timestep is informed not only by the input at the
given timestep but by the context of the previous set of computations.

This context being fed in serves as an aggregated sequential memory that the
recurrent network is building up. We haven’t said much about what actually
goes on within the compute unit. There are a number of different computations
that can be done within the compute unit of a recurrent network, but we can
describe the vanilla case pretty succinctly.

Let S denote the sequential memory our network has built up, which is our
hidden state. Our recurrent unit can then be described as follows:

Sy =FUX,+WS,_1)
O; = Softmax (V7))

Here the function, F', would apply some sort of a nonlinearity such as tanh. U
and W are often two-dimensional matrices that are multiplied through the input
and hidden state respectively. V is also a two-dimensional matrix multiplied
through the hidden state.

Notice also that the computation at a given timestep uses the hidden state
generated from the previous timestep. This is the recurrent unit making use of
the past context, as we want it to.

Mathematically, the weight matrix U has the effect of selecting how much of
the current input we want to incorporate, while the matrix W selects how much
of the former hidden state we want to use. The sum of their contributions
determines the current hidden state.

When we say we use the same recurrent unit per computation at each timestep,
this means that we use the exact same matrices U, W, and V for our computa-
tions. These are the weights of our network.

As mentioned, the role of these weights is to modulate the importance of the
input and the hidden state toward the output during the computations. These
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Figure 99: Two recurrent unit states in recurrent neural network
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Figure 100: Three recurrent unit states in recurrent neural network
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Figure 101: Recurrent neural network unrolled
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weights are updated during training via a loss function, as we did with the
previous neural network families we studied.

And with that, we have endowed a neural network with sequential memory!

Recurrent Unit 2.0

Well, almost. It turns out that in practice our vanilla recurrent networks suffer
from a few pretty big problems. When we are training our recurrent network,
we have to use some variant of a backpropagation algorithm as we did for our
previous neural network architectures.

That involves calculating a loss function for our model outputs and then com-
puting a gradient of that loss function with respect to our weights. It turns out
that when we compute our gradients through the timesteps, our network may
suffer from this big problem called vanishing gradients.

As an intuition for this problem, imagine the situation of applying a tanh non-
linearity to an input several times (Figure 102).

1 == Tanh(Tanh(Tanh(X)))
== Tanh(Tanh(X))
Tanh(X)

0.5

0
-0.5

-1

= 2 0 2 4

Figure 102: Vanishing gradient problem in recurrent neural network

Notice that the more times we apply the tanh function, the more flat the gra-
dient of the function gets for a given input. Applying a tanh repeatedly is
the analogue of performing a computation in our recurrent network for some
number of timesteps.

As we continue to apply the tanh, our gradient is quickly going to 0. If our gra-
dient is 0, then our network weights won’t be updated during backpropagation,
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and our learning process will be ineffective!

The way this manifests itself is that our network may not be able to have a
memory of words it was inputted several steps back. This is clearly a problem.

To combat this issue, researchers have developed a number of alternative com-
pute units that perform more sophisticated operations at each timestep. We
won’t go into their mathematical details, but a few well-known and famous ex-
amples include the long short-term memory (LSTM) unit and the gated
recurrent unit (GRU). These units are specifically better at avoiding the
vanishing gradient problem and therefore allowing for more efficient learning of
longer term dependencies.

Final Thoughts

To conclude our whirlwind tour of recurrent networks, let’s leave with a few
examples of problem spaces where they have been applied very successfully.

Recurrent networks have been applied to a variety of tasks including speech
recognition (given an audio input, generate the associated text), generating im-
age descriptions, and machine translation (developing algorithms for translating
from one language to another). These are just a few examples, but in all cases,
the recurrent network has enabled unprecedented performance on these prob-
lems.

Test Your Knowledge
Recurrent Network Advantages

Alternative Recurrent Units
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